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Abstract Privacy concerns in publishing graph data, such as social-network graphs, have been gaining much pub-

lic attentions in recent years due to the growing demands for publishing graph data containing privacy. So far, there

have been lots of researches focusing on a labeled graph anonymization problem that is more applicable and since

more difficult than that in unlabeled situations. In this paper we address the K-anonymity problem in edge-labeled

graphs based on the label-bag model. We provide efficient greedy algorithms and evaluate them by experiments on

both synthetic and real data. Further we extend the algorithm considering other utility measurements and show

that our algorithm can be applied to varied utility metrics.
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1. Introduction

Social networks (SNs) have shown remarkable development

in recent years. Due to the rapid proliferation of SNs, there

is a growing concern in privacy. SN data publishing is one

of the main channels for privacy breaches. SN data owners,

such as Facebook and LinkedIN, sometimes have responsibil-

ity to publish their data for various purposes. In this case,

transforming data in such a way that privacy information is

not released is important. Such data transformation is called

”anonymization”.

In many cases, SN data is represented as a graph G =

(V, E), where vertices (V ) represent entities and edges (E)

represent relationship between them. To model more com-

plex information, a graph may have labels on vertices and/or

edges that describe the attributes of entities or properties as

shown in Figure 1.

Figure 1 Social Network Graph

By having access to this graph, adversaries, with their ex-

isting knowledge about some involved entities (i.e. Bob has

3 friends), can gain more information such like that node

3 is representing Bob and he is an instructor (since node 3

is the only node with degree 3 in this graph). To prevent



the privacy of the entities from being violated, an appropri-

ate graph anonymization method is needed to sanitize the

original graph before publishing.

Varied anonymization methods have been proposed to re-

trieve the privacy requirement and to realize it with min-

imum extra information added becomes a challenging task.

The concept utility is then proposed to measure the informa-

tion loss during data publishing. Therefore most researches

aim to solve the anonymity problem with the least informa-

tion loss, or the largest utility, within extent privacy level.

In this paper we address the K-anonymity problem of edge-

labeled graphs based on the label-bag model. Since it has

been shown that the problem is NP-hard [4], we provide

heuristic methods based on edge-addition in which we try

to include the utility measurement as well. Additionally, we

evaluate the effectiveness of our proposed scheme in some

experiments.

The rest of this paper is organized as follows. Section 2 in-

troduces some related works and we formalize the problem in

Section 3. Section 4 gives the proposed methods and some

discussion of utility measurement is involved in Section 5.

We show the results and analysis of experiments in Section

6 and make a conclusion in Section 7.

2. Related Work

Privacy-preserving graph publishing is to transform a

graph into another in such a way that adversaries with cer-

tain background knowledge cannot get the identity and can-

not re-identify the entities and/or relations. So far, there

have been lots of methods proposed to address the graph

anonymization problem.

This problem can be categorized into several classes ac-

cording to the graph model and quantity of knowledge that

adversaries are assumed to have. The main part of researches

are focusing on anonymizing structural information. These

methods can be roughly divided to two categories: unla-

beled graph anonymization [2] [3] [6] [10] [11] [12] [13] and la-

beled graph anonymization [4] [7]. Labeled cases can be fur-

ther divided according whether vertices or edges (or both)

are labeled. Most early works focus on unlabeled or vertex-

labeled cases. Sweeney [2] gave the early idea of K-anonymity

by replacing the identifiers of published data. Liu [3] defined

the K-degree anonymity. This work was assuming that only

the degrees of certain vertices are known by the adversary.

Zhou [6] considered neighborhood attacks of a certain ver-

tex and is extended by Tripathy [13], who assumed the ad-

versaries having more information beyond 1-neighborhood

knowledge. Later researches such like K-automorphism [10]

and K-symmetry [12] proposed models with stronger privacy

assurance on the whole structure property of graphs. Cheng

[11] further discussed the K-isomorphism situation with con-

sideration on link information. Recent years, attentions were

paid on edge-labeled problems like Yuan [7] and Kapron [4].

In terms of the anonymization methods used, there are pro-

posals focusing on edge addition/deletion [3] [4] [6] [11] [18],

vertex/edge addition [12] [16], vertex generalization [14], edge

label generalization [7] and class/cluster-based method [1]

[13]. In terms of the attack model, there are models focusing

on entity re-identification like [2] [3] [12], link re-identification

like [8] [20], or many others considering both sides such as [7]

[11]. Other approaches may be related to active attacks like

Backstrom [5], in which attackers may change the data.

Our work is inspired mainly by [4] [7]. However, we focus

on edge addition operation instead of label generation meth-

ods in [7] that is essentially a direct extension from unlabeled

models. The core idea of [7] is to realize K-degree anonymity

and generalize edge labels, which introducing a lot of noises

(noticing that in the early grouping and addition steps, edge

labels are not taken into consideration).

In some cases we may have restrictions not to modify the

edge labels. Kapron [4] gives defined label sequences instead

of degree sequences and proved that finding a result for the

label sequence based anonymization problem with minimum

cost is NP -hard when K > 2. What is more, this result

can be used to prove the NP -hardness of some previously

defined anonymization problems in unlabeled situations: K-

neighborhood [6], i-hop anonymity [13] and k-symmetry [12].

It can be easily understood that an applicable algorithm

for the label-graph anonymization problem can be applied

to unlabeled graph situations with very slight modification.

However in [4] only the algorithm for bipartite graph with

K = 2 is given, which belongs to P . For this reason, in this

paper, we provide greedy algorithms based on label-graphs.

Formal definition of the problem is given in the next section.

3. Problem Definition

Now we formally definition the label-bag based graph

anonymization problem. The definition of label-bag (LB)

is as follows:

Definition 1. label-bag (LB): A label-bag is a multi-set

of labels. For a vertex vi, LBi is the set of all labels on edges

which have one end point of vi.

With the definition of a label-bag, we can define the con-

cept of label-bag based K-anonymity.

Definition 2. label-bag based K-anonymity (LB K-

anonymity): Given an simple edge-labeled graph G and inte-

ger K, for any vertex v in graph G, there exists at least K-1

vertices with the same label-bag.



Figure 2 Example of LB K-anonymity

In the definition, a simple graph means an undirected

graph without self-loop or multi-edges. For example, Fig-

ure 2(b) is an anonymized version of the original graph in

Figure 2(a) by replacing identifies (names) with meaningless

arbitrary unique numbers. The label-bag of vertex 2 and 3

in Figure 2(b) is {a,b} and {a,b,b} respectively (In the fol-

lowing of the paper, we may use strings like ’ab’ and ’abb’

to represent the label-bag just for simplicity ).

Then we are able define the label-bag based anonymization

problem. As have been mentioned, besides privacy require-

ments, another necessary task of privacy-preserving data

publishing is to assure the usefulness of resulted anonymized

data. There is a need to include the measure of information

loss to the process of solving such kind of problems.

Definition 3. LB K-anonymity problem: Given an

simple edge-labeled graph G = (V, E) and an integer K(K >=

2), the LB K-anonymity problem is to construct a graph

G′ = (V, E ∪ ∆E) such that G′ satisfies LB K-anonymity

condition with the minimum information loss.

Definition 4. LB K-anonymity problem 2: Given an

simple edge-labeled graph G = (V, E) and an integer K(K >=

2), the LB K-anonymity problem 2 is to construct a graph

G′ = (V, E ∪ ∆E) such that G′ satisfies LB K-anonymity

condition and makes |∆E| minimal.

The above definition is modified from that of [4]. Here

we use the term ”label-bag”, since we do not consider the

order among labels, whereas ”label sequence” is used in [4].

It is easily to find that Definition 4 is just an extension of

Definition 3 by specify the measurement as ”make |∆E| min-

imal”. Making the number of added edges minimum is not

a restricted condition in all LB K-anonymity problems. For

example, the sum of degree difference of all vertices is also a

possible criteria even with the same edge addition/deletion

setting, although it is essentially equivalent to the number

of added/deleted edges (see [3] for more details). In the rest

paper, we assume Definition 4 as our main topic.

Figure 2(c) shows how to make a graph LB K-anonymized

by adding edges to graph G in Figure 2(b). G′ satisfies LB

K-anonymity for any K <= 4. Note that only edge addition

Figure 3 Algorithm Overview

is allowed in this problem setting. In other words, we do not

consider other operations, such as edge deletion or perturba-

tion.

4. LB K-anonymity

As already mentioned above, the LB K-anonymity problem

is NP-hard. So we propose a two-phase heuristic algorithm.

Figure 3 shows the overview of our method. First we di-

vide the input vertex sets into several groups and check if

the LB K-anonymity condition is satisfied. If so, the result

would be output. Otherwise, we move to the second edge-

addition phase. The second phase is iterated until the LB

K-anonymity condition is satisfied. Here a new term called

TLB is used to record the graph state, which will be explaned

later. Details of each phase will be introduced in sections 4.1

and 4.2 respectively. Now we give some definitions used in

the algorithm introduction.

Definition 5. target label-bag (TLB): For each group

gm, TLBm is the ideal LB that all members in this group

are supposed to reach.

Definition 6. residual label-bag (RLB): For every ver-

tex vi, RLBi is the difference between TLBm and LBi, where

vi belongs to group gm.

Definitions 4 and 5 define two different kinds of label-bags,

one for an anonymous group while the other for a vertex.

The following equation shows how to compute the TLBm

for group m.

TLBm =
X

i∈gm

LBi (1)

Here an operation ”+” combines two label-bags and gives

the union of two multi-sets. For example, ’aa’+’ab’=’aab’

and ’aab’+’bb’=’aabb’. In other words,if a 3-size group con-

tains vertices with label-bag ’aa’,’ab’ and ’bb’, we can tell



the TLB for this group is ’aabb’.

The equation below shows the way to calculate RLB. Also

this is the relationship between TLB and RLB.

RLBi = TLBm − LBi (2)

Here the operation ” − ” means to compute the label-bag

that belongs to LBi but not LBj .

4. 1 Grouping

The first phase is to divide the vertices into several non-

overlapping subsets called anonymous groups. We utilize the

TLB as a measurement to result in good grouping. Two dif-

ferent algorithms are used.

First is the feature based grouping algorihtm. This algo-

rithm repreats a sequential scan to all vertices. Within each

step, the vertex with least TLB increse is chosen to be added

to group g until it reaches the pre-defined group size. Algo-

rithm 1 shows the pseudo code of feature based grouping.

Algorithm 1 Feature based Grouping

Input: Graph G = (V, E), strategy s

Output: Grouping {g}
1: {g} ← empty;

2: for m = 1 to s.numOfgroup(m) do

3: TLBm ← ∅
4: for i = 1 to |gm| do

5: find v in V with least |TLBm|
6: insert v to group gm

7: TLBm = ComputeTLB(TLBm, LBi)

8: end for

9: end for

Since the edge addition procedure highly depends on the

previous stage and the property of a grouping strategy would

have great influence to the final cost, a more effective group-

ing algorithm is need. Inspired by clustering approaches like

Campan [9], we give a clustering based method shown in Al-

gorithm 2.

Algorithm 2 Clustering based Grouping

Input: Graph G = (V, E), integer K

Output: Grouping {g}
1: {g} ← V ;

2: while !(∀|gm| >= K or no more merging) do

3: Merging two closet clusters with condition C;

4: end while

5: {g} ← GroupAdjust({g})

Here condition C refers to: Any clusters with size larger

than K are not further merged. Considering that traditional

clustering methods have no restrictions on cluster sizes, this

condition can effectively help to reduce the average cluster

(group) size and avoid bias clustering result.

Figure 4 Algorithm Overview

A prototype-base hierarchical clustering method is used.

The group set is initialized with vertex set V and we keep

merging the closet clusters. Distance between two cluster is

defined as:

Dist1 : Dist(gmi , ggj ) = |TLBmi − TLBmj |
+|TLBmj − TLBmi |

(3)

A major drawback of this clustering grouping method is

that group size is not taken into consideration when choos-

ing closet clusters, while in fact it could be much easier to

satisfy the same TLB for a group with smaller size than a

larger one. So, we give two alternative distance metrics as

follows:

Dist2 : Dist(gmi , gmj ) = Dist1 ∗ (|gmi | + |gmj |) (4)

Dist3 : Dist(gmi , gmj ) = (TLBmi − TLBmj ) ∗ |gmj |
+(TLBmj − TLBmi) ∗ |gmi |

(5)

The function in last line would be responsible for the sit-

uation when only one cluster is under size K while it cannot

be merged to any other one according to condition C. In that

case, we can merge this cluster with a previous cluster which

would results in minimum increase to the original value of

|TLB|.
4. 2 Edge Addition

After we have assigned vertices to groups, before we start

to add edges to make all groups satisfying the anonymity

condition, value of TLB for each group and RLB for each

vertex need to be calculated for later use. Figure 5 is an

example showing grouping result of graph in Figure 4(a),

through feature based grouping algorithm.

As described in Figure 3, two steps are performed to

achieve final LB K-anonymity state. Firstly we check all

unconnected pairs of vertices with a common label in their

RLB. We can find that both vertices 7 and 9 in Figure 5

have a label ′b′. So, an edge can be added in between (Fig-

ure 4(b)). However, it is impossible to add an edge of label
′a′ to vertices 4 and 8 since there already exists one and



Figure 5 Algorithm Overview

we cannot find any other pairs. In this situation, procedure

TLBAdjustment() is conducted as shown in Figure 4(c), we

increase the TLB of group 1 by ′a′ and succeed to find vertex

pair 8 and 9. We follow this route until all nodes satisfy the

condition that TLB = LB.

Although it seems impossible to expect number of pairs

being found in the next iteration of GreedyEdgeAddition(),

same characteristics can help to find a better candidate group

for TLBAdjustment(), like group 1 in the previous case. The

following few factors are thought to be meaningful when se-

lecting a candidate group:(1) average degree of the group;(2)

average |RLB| value;(3) connectivity to those vertices with

large |RLB| and (4) connectivity with other group members.

The first factor is straightforward since vertex with larger de-

gree can be more difficult to be wired with others. However

most real-data of social network is so sparse that make the

influence of this factor relatively slight. The last two fac-

tors mean the possibility vertices of the candidate group can

be wired to other vertices. They are quite effective but is

expensive to calculate. In all, a strategy combining factors

(2)(3)(4) is used in our algorithm: sort all groups in descend-

ing order of their values of total |RLB| values while excluding

those with low connectivity.

By carefully choosing the candidate group, the algorithm

can terminate in finite time (unless the situation of no an-

swer and need to be solved by other means like adding noise

nodes, which is beyond the range of this paper).

5. Improved Algorithm on Utility

Method introduced above focus on edge-labeled K-

anonymity problem under the goal of less number of edges

added. Nevertheless, in order to retain varied characteristics

of the original graph, other utility measurement should be

included. So in this chapter we introduce some other utility

metrics an how their can be applied to our LB K-anonymity

model.

In terms of the social network data, some of the graph

properties are of interest. Most of them are basic graph

properties as introduced in [14]: degree, path length, transi-

tivity and so on. The other kind is related to the answers to

extent queries like [7] and [20].

The utility metrics used in our paper are belonging to the

first category as follows:

(1) Degree Distribution and Label Distribution. They are

the measurement of degree and label property of graph data.

EMD value (Earth Mover’s Distance) [19] is used to mea-

sure the difference between two distributions. We adapt this

concept to our research to calculate EMDD (EMD for de-

gree) and EMDL (EMD for label). According to [19], having

two signature (distributions) P = {(p1, wp1), ..., (pm, wpm)},
Q = {(q1, wq1), ..., (qn, wqn)}, Earth Mover’s Distance is de-

fined as

EMD(P, Q) =

Pm
i=1

Pn
j=1 dijfij

Pm
i=1

Pn
j=1 fij

(6)

where dij and fij represent the distance an flow between

cluster pi and pj . This model is applied to network graph sce-

nario by [17] in the following way. Let the attribute domain

of numerical values be {v1, v2, ..., vm} and ri = pi − qi, (i =

1, 2, ..., m), the EMD value can be calculated as

EMD(P, Q) =
1

m − 1
(|r1|+|r1+r2|+...+|r1+r2+...+rm−1|)

(7)

In our case, to calculate EMDD, let Distribution P =

{(d1, p1), (d2, p2), .., (dt, pt)}, Q = {(d1, q1), (d2, q2), ..., (dn, qn)},
having their degree sequences sorting in ascending order.

Here pi(i = 1, , 2...t) and qj(j = 1, 2, ..., n) means the weight

of each degree di and dj respectively. Let m = maxt, n, the

common degree domain can be expressed as {d1, d2, ..., dm}
while formula 5.2 can be used directly.

Similarly, in case of EMDL, let {l1, l2, ...lm} be the label

domain makes formula 5.2 applicable.

(2) Shortest Path Distance (SPD). This is a widely used

measurement in graph theory which means sum of weights of

shortest path between two vertices. We utilize the average

shortest path distance (ASPD) and calculate it through the

famous Floyd-Warshall algorithm [22].

The Floyd-Warshall algorithms compares all pair of ver-

tices’ paths in a graph with complexity of O(N3). The idea

of this algorithm can be expressed by the following recursive

equation.

SPD(i, j, k) = min(SPD(i, j, k − 1), SPD(i, k, k − 1)

+SPD(j, k, k − 1))

(8)

By computing this for all (vi, vj) pairs and for k =

1, 2, ..., |V |, we are able to get average shortest path distance

by

ASPD =
1

|(vi, vj)|vi ∈ V, vj ∈ V |
X

vi∈V,vj∈V

SPD(vi, vj)

(9)



(3) Clustering Coefficient (CC). This is a measure of how

vertices in a graph tend to cluster together. Again we use

the average local clustering coefficient (ACC) a s criterion.

Clustering coefficient can be roughly dived into two cat-

egories, global clustering coefficient and local clustering co-

efficient. Though they differ in definition, core idea is to

measure the ratio of k|edges|/|vertices|. Suppose for a ver-

tex vi, its neighborhood Ni is defined as {vj |e(vi, vj) ∈ E},
then ENi = {e(vj , vk)|vj ∈ Ni, vk ∈ Ni} represents all the

edges between vertex i’s neighbors. The local clustering for

vertex vi is defined as follows.

CCi =
|ENi |

|Ni|(|Ni| − 1)
(10)

We can directly derive the formula for average clustering

coefficient as

ACC =
1

|V |
X

i∈V

CCi (11)

Applying these utility measurements to anonymization al-

gorithms is very simple, the only difference is in the edge

addition step. Note that in the original method (without

utility consideration) introduced in Section 4, we decide a

match whenever two vertices share a common label in RLB

and has no conflict of edge addition. While in new algorithm

we tend to choose the candidate match with highest utility.

To achieve this we compute the utility score for every pair of

match before decision.

Algorithm 3 Edge Addition Algorithm with Utility

Input: Graph G = (V, E), integer K, Grouping {g}, Utility Met-

ric C

Output: LB K-anonymity Graph G′ = (V ′, E′)

1: {TLBm} ← GetTLB({gm})
2: Q ← {v|cRLBi(l) > 0}
3: sort Q in descending order of cRLBi(l)

4: for each u ∈ Q do

5: minCost = INFINITY

6: vv ← NULL

7: for each v ∈ Q, v 6= u do

8: if !e(u, v) && (RLBu ∪ RLBv 6= ∅) then

9: cost = Compute(C, u, v)

10: if cost < minCost then

11: cost = minCost

12: vv ← v

13: end if

14: end if

15: end for

16: if minCost 6= INFINITY then

17: add edge between u and vv

18: end if

19: end for

Algorithm 6 is the description of GreedyEdgeAddition()

function considering utility metrics. The utility metric C

Figure 6 Result on variation of K

Figure 7 Result on variation of L

could be either metric be introduced above.

The new method considering utility metrics will bring ex-

tra execution expense, especially for case of ACC (O(N2)

complexity) and ASPD (O(N3) complexity). We evaluate

resulted utility scores of this method in the next section.

6. Experiments

We conduct a series of experiments to evaluate the effi-

ciency and effectiveness of our algorithm. Experiments are

conducted in environment as Table 1.

表 1 Experimental Environment

CPU 2.26 GHz Intel Core 2 Duo

Memory 4GB 1067MHz DDR3

Language/Compiler c/gcc-4.2

Since social network is well-modeled by the small world

graph, we use the Small World Graph generated by [23] as

the synthetic data. Figure 6 and Figure 7 are the results on

variant of anonymity level parameter K and number of la-

bels L in 500 size synthetic dataset. Both of these parameters

are positive correlated to the total cost. In case of parame-

ter K (fixing L as 3), clustering based method, especially the

one with distance metric 3 has good result in relative small

K values. While feature based algorithm performs best in

larger K situations. In terms of labels (K = 5), similarly

the feature based algorithm and clustering based algorithm

3 outperform the others.

Table 2 shows the result of dataset-1, extracting from

Speed Dating Data [24]. The graph is constructed by 551



Figure 8 Execution Time

vertices, 8368 edges and 2 kinds of labels. The max degree

of this graph is 22 and the average degree is around 15. The

result is close to that of synthetic data and again reflects

that clustering based algorithm with distance metric 3 and

feature based grouping algorithm fit for different K values.

表 2 Real Dataset-1

K Feature based Clustering 1 Clustering 2 Clustering 3

5 169 112 117 131

10 398 309 312 291

20 664 567 526 540

50 1259 1325 2239 1820

In result of Table 3 we use a dataset extracted from the

co-author network on condensed matter section of arXiv E-

print Archive [25]. The graph consists of 16726 vertices and

47594 edges with the number of labels set as 3. Average and

max degree are 5.09 and 107 respectively. It can be seen

that feature based algorithms outperforms the others since

K exceeds 10.

表 3 Real Dataset-2

K Feature based Clustering 1 Clustering 2 Clustering 3

5 1730 1871 1740 1628

10 3212 3779 3317 3063

20 5207 6864 6053 5706

50 10337 16502 12450 11629

Figure 8 shows the exectuion time of 2 phases for each al-

gorithms applied to real dataset-1. Since the edge addition

time is relatively small to that of grouping, to choose the

feature based algorithm is more efficient.

Table 4 and 5 compare the results of methods considering

utility with previous one on the 3 real datasets. Row with

label ”original” is the baseline that contains all utility scores

of resulted LB K-anonymity graph by using method without

considering utility metrics. Following are several lines each

representing the results by applying different utility measure-

ments.

表 4 Real Dataset-1 using utility metric

Statics of Output Anonymized Graph

Applied Utility COST EMDD EMDL ACC ASPD

original 169 0.0198 0.0074 0.0455 3.2840

EMDD 169 0.0198 0.0074 0.0431 3.2954

EMDL 169 0.0198 0.0074 0.0431 3.2954

ACC 169 0.0198 0.0074 0.0051 2.5269

ASPD 169 0.0198 0.0074 0.0192 2.7787

In the result of real dataset-1, although EMD based meth-

ods do not have any improvement, which probably due to

small label size of data, methods using ASPD and ACC re-

sult in good utility compared to the baseline.

For the sake of great computation cost, only EMDD and

EMDL based metrics are evaluated for the second datasets.

In this case both of these two utility metrics have no mani-

fest influence to the results. This is because the low average

degree of the whole graph makes the result of a few rewiring

not obvious.

表 5 Real Dataset-2 using utility metric

Statics of Output Anonymized Graph

Applied Utility Metrics COST EMDD EMDL

original 1730 0.0018 0.0060

EMDD 1733 0.0018 0.0060

EMDL 1733 0.0018 0.0060

7. Conclusion

In this paper, we discussed the K-anonymity problem in

privacy-preserving data publishing. This is an extension

from the unlabeled model and can be applied to many real-

world situations. We provide a heuristic algorithm based on

label-bag model and realize it in two different ways.

We evaluate them by some experiments on both synthetic

and real data. Through the results, it is proved to be effi-

cient and of good utility. Also, we investigate how choices

in parameters would influent the cost. In consideration of

the problem when there does not exist an answer, we give

an algorithm based on noise vertex. An improved method is

proposed considering four utility metrics and is proved to be

of good utility through experiment results.

There is still a need to improve the edge addition algo-

rithm to guarantee the realization of LB k-anonymity graph

in arbitrary condition. To extend our model to utilize edge

deletion and label generalization operations are other inter-

esting topics.
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