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Abstract Distributed storage systems have become the core of many large-scale applications today. Much research

has focused on the distribution of data in such systems, with two main approaches of tree-based and hash-based al-

gorithms. Hash-based algorithms tend to provide a good distribution based on the randomness of the hash function

while maintaining a good performance if correctly implemented. However, the approach also incurs performance

cost when a node joins or leaves the system, especially in the context of high-performance datacenter clusters. This

paper investigates such costs with a simulation model and discusses the effect of a node joining and leaving for a

variant of hash-based algorithms for datacenter-oriented storage clusters.
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1. Introduction

Distributed storage systems are a current research focus in

computer systems and data engineering today. Such systems

provide many attractive features such as scalability, avail-

ability, and fault tolerance by harnessing collective capacity

of multiple storage nodes. The design of distributed storage

systems also comes with a number of difficulties due to the

distributed nature; oftentimes a good design is a compromise

of scalability, availability, and fault tolerance based on the

requirements of the system.

Most storage systems write data to underutilized device.

The problem with this approach is that once written, data

is rarely, if ever, moved. Even a perfect distribution can

become imbalanced because the storage is expanded. More-

over, it is difficult to equally distribute the load across the

systems since data is distributed to node gradually over time,

which often yields unexpected hotspots.

A robust solution for the above issues is to randomly dis-

tribute data among available storage devices. The result is a

probabilistically balanced distribution and uniformly mixes

of old and new data. In this approach, all device will have

similar load, enabling the system to perform well under vari-

ous workloads [1]. Furthermore, random distribution across a

large number of devices offer a high degree of parallelism and

better aggregate bandwidth, thus exploiting the distributed

nature of the system. However, simple hash-based methods

are unable to cope with changes in the number of partici-

pating nodes, often incurring a massive reshuffling of data.

Another challenge is to place data’s replicas on uncorrelated

devices to avoid loss of two replicas in case of failure on cor-

related devices.

This paper discusses the effect of node leaving and joining

in hash-based distributed storage systems. We also present

an approach to measure node joining and leaving costs in

a hash-based distributed storage system designed for data-

center networks. The algorithm in this approach is CRUSH

(Controlled Replication Under Scalable Hashing) [2], the core

distribution algorithm employed by Ceph [3], targeted for

its proven effectiveness in both theoretical and industrial

practice. CRUSH shares many similar characteristics with

other hash-based distribution algorithms including high par-

allelism, fast look-up, and randomized distribution of data.

The algorithm implements a deterministic hashing function

that maps an input value typically an object identifier to a

list of devices on which to store object replicas. Only a com-

pact, hierarchical description of the devices comprising the

storage cluster and the replica placement policy is required

to determine the location of an object’s replica; therefore,

the approach provides a high level of parallelism by elimi-

nating any shared structure or central communication point

and near-random data distribution.

The structure of the paper is organized as follows. The

second section presents several notable data distribution ap-

proaches. We review the design CRUSH in details in section

3. Section 4 introduces our simulation model for evaluating

the costs of node joining and leaving. Section 5 presents the

results of our model from simulating a large cluster. Finally,



conclusion and future work are discussed in section 6.

2. Related Work

We present several related works of data distribution for

distributed storage systems. Each of them offers a differ-

ent paradigm and address different requirements in today’s

storage systems.

2. 1 Hadoop Distributed File System (HDFS)

HDFS [4] is a popular distributed file system designed

based on Google File System [5] for MapReduce [6]. With

one single central namenode server (metadata server), HDFS

utilizes several techniques to guarantee a robust and highly

scalable storage platform. Files are divided into small blocks

of 64MB and the blocks are distributed to data nodes under

the supervision of the namenode. Since the namenode han-

dles every operation except data read/write, it also becomes

the central point of failure of the system. There has been

some research [7] [8] to address this weakness with proposals

including mirrored namenode (or secondary namenode) or

using BigTable-like architecture [9].

2. 2 Fat-Btree

Fat-Btree [10] is a variant of parallel B-Tree structure

widely used in many distributed Database Management Sys-

tems (DBMS’s). In a Fat-BTree, each Processing Element

(PE) has a subtree of the whole B-tree consisting of the root

node and all intermediate nodes between the root and the

leaf nodes allocated to that PE. As a result, the lower level

index nodes with high update frequency have fewer copies

compared to upper level index nodes with lower update fre-

quency. This technique reduces synchronization costs among

PEs when the Btree structure is modified by data operations

or node additions and removals. Nevertheless, there is still

significant performance cost due to the strict synchroniza-

tion of the shared nodes among the PEs, especially when the

number of nodes increases.

2. 3 Chord

Chord [11] is a protocol for a peer-to-peer distributed hash

table that uses a variant of consistent hashing to assign keys

to nodes. In Chord, each node requires routing information

about O(logn) nodes, and performs lookups via O(log n)

messages to other nodes. Chord provides good support as

node joins or leaves the system, with each event resulting in

O(log2 n) messages. The algorithm also scales well with the

number of nodes, and is able to recover from large numbers

of simultaneous node failures and joins, and provide correct

answers for lookups even during recovery. One big drawback

of Chord in the context of distributed storage systems is its

message-based exchange nature, which makes lookups in a

datacenter-oriented file system rather expensive compared to

HDFS’s centralized namenode or Fat-Btree. In fact, Chord

is mainly designed for and mostly used only in peer-to-peer

distributed systems.

3. The CRUSH Algorithm

CRUSH is the basic distribution algorithm of Ceph, an

object-based distributed storage system. It shares many

common characteristics with other hash-based distribution

approaches such as high parallelism, fast look-up and bal-

anced data distribution. At the same time, similar to other

hash-based algorithms, CRUSH also faces with the difficulty

of node joining and leaving. The inherent costs of mitigat-

ing such changes in the cluster are translated into compu-

tational costs and exchanged messages. This paper inves-

tigates CRUSH in terms of node joining and leaving costs

as an example of hash-based storage systems, and discusses

measurements for such costs.

The fundamental of CRUSH is a per-device weight-based

distribution of data object that approximates a uniform

probabilistic distribution. CRUSH utilizes a hierarchical

cluster map that represents the hierarchy of the cluster and

the weight of individual devices to control the distribution

of data. In addition, the distribution is also based on pol-

icy, which is defined in terms of placement rules that specify

how many replica targets are selected from the cluster and

what restrictions are imposed on replica selection. Given a

single integer input value x, CRUSH will output an ordered

list
−→
R of n distinct storage targets. Relying upon a strong

multi-input integer hash function with x as a parameter, the

algorithm provides a deterministic and independently calcu-

lable mapping scheme using cluster map, placement rules,

and x.

3. 1 Hierarchical Cluster Map

CRUSH organizes the cluster topology according to de-

vices and buckets, both of which have numerical identifiers

and weight values associated with. A bucket may contain

any number of devices or other buckets; they can form inte-

rior nodes in a hierarchical manner with the storage devices

at the leaves. Bucket weights are defined as the sum of the

weight of the items they contain. By combining buckets into

a hierarchy, the structure as in a data-center cluster can be

flexibly represented.

There are four different types of buckets, each with a differ-

ent selection algorithm to address different data movement

patterns resulting from the addition or removal of devices

and overall computation complexity.

3. 2 Replica Placement

CRUSH is designed to address the placement of data with

regards to replication in a heterogeneous cluster. The place-

ment of replicas on storage devices in the hierarchy also has

a significant effect on data safety. By projecting the struc-
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Figure 1 A partial view of a four-level cluster map hierarachy

consisting of rows, cabinets, and shelves of disks.

ture of the system into the cluster map, CRUSH can separate

storage devices into failure domains according to the physi-

cal location of the devices. For example, devices on the same

shelf belong to the same failure domain since they are more

likely to fail together. Although placing replicas on devices in

distant locations ensures better data safety, communication

costs also increases due to lower bandwidth between nodes

across long distance than nodes in vicinity.

CRUSH accommodates a wide range of scenarios in data-

center storage clusters with different data replication strate-

gies and underlying hardware configurations with placement

rules that allow the system administrator to specify how ob-

jects are place with fine granularity. Figure 1 shows a sys-

tem of four level of hierarchy, the algorithm starts from the

root that has pointers to four rows. The placement policy

then requires the selection of one row, and within the row

it chooses three cabinets. For each cabinet, the placement

rule selects a disk to store a replica. In this example, three

disks are selected in three separate cabinet of the same row

to store three corresponding replicas. This approach is useful

to spread replicas across separated failure domains (separate

cabinets), but constrain them within some physical bound-

ary (the same row).

3. 3 Bucket Types

CRUSH is designed to reconcile two competing goals: effi-

ciency and scalability of the mapping algorithm, and minimal

data migration to maintain a balanced distribution of data.

In order to achieve these goals, CRUSH utilizes four different

types of buckets to represent internal (non-leaf) nodes in the

cluster hierarchy: uniform buckets, list buckets, tree buckets,

and straw buckets. Each bucket type is based on a different

data structure and utilizes a different hashing function to

pseudo-randomly select nested item during the replica place-

ment process. The performance of each bucket is a trade-off

between speed and efficiency of minimizing data movement

in case of node addition or remove. A summary of the dif-

ference among the four bucket types is presented in Table

1.

Action Uniform List Tree Straw

Speed O(1) O(n) O(log n) O(n)

Additions poor optimal good optimal

Removals poor poor good optimal

Table 1 Summary of mapping speed and data reorganization ef-

ficiency of different bucket types when items are added

or removed from a bucket

In this study, we focus on only Tree Bucket and Straw

Bucket for their performance and high potential for practi-

cal applications. The other two, Uniform and List Bucket,

lack adequate performance for a cluster with frequent node

additions and removals and are mainly for theoretical discus-

sion.

3. 4 Implementation of CRUSH

The implementation of CRUSH is presented in details in

[12] as part of RADOS. In addition to storage nodes, the de-

sign also includes monitors which provide information about

the current state of the cluster and manage node joining,

leaving, and failures. Clients access one of the replicated

monitors first to retrieve a cluster map before accessing any

objects; later updates in cluster map can be retrieved from

any storage nodes. Within the storage cluster, changes in

cluster map are propagated rather than directly transferred

from the monitor to all the nodes. This approach enables

a small number of replicated monitors to support a large

number of storage nodes in datacenter clusters.
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Figure 2 A cluster of thousands of storage nodes. A small num-

ber of tightly coupled, replicated monitors collectively

manage the cluster map that defines cluster memeber-

ship and placement rules. Each client performns direct

IO operations on data objects with storage nodes.



4. Node Joining and Leaving Costs

A critical element of data distribution in a large storage

system is the response to the addition or removal of storage

nodes. Hash-based algorithms typically exploit the random

nature of hash functions to achieve a uniform distribution of

data and workload to avoid asymmetries in data placement.

When an individual device fails, the algorithm needs to redis-

tribute the data to maintain such balance. The total data to

be remapped is minimized to as much as wfailed/W , where

W is the total weight of all devices. However, when the clus-

ter hierarchy is modified, as in adding or removing a storage

device, the situation is much more complex. The mapping

process with hashing often struggle to minimize data move-

ment and can result in additional data movement beyond the

theoretical optimum 4w
W

. For example, in CRUSH changes

in the cluster map also leads to propagation of the map to

all storage nodes, which takes a O(logn) time for a cluster

of n nodes [12]. In worst case scenario, the implementation

of CRUSH in RADOS [12] offers a performance of less than

20% of duplicated massages. Clients that access the data in

a CRUSH cluster also needs to update their local copy of the

cluster map in order to correctly locate data objects in this

case.

Another performance cost incurred when a node joins or

leaves the cluster hierarchy is from re-calculating the location

of every data object. As discussed in 3.3, the randomness of

data distribution in has-based algorithms relies on the qual-

ity of hashing functions, which can be expensive when there

are a large number of objects. Given that in a large-scale

storage clusters with thousands of nodes, node removals and

additions occur frequently, re-calculation of objects’ position

each time a change occurs is rather costly and can have sig-

nificant impact on the overall performance. Some algorithms

can avoid calculating the position of every data object, while

some other must perform a full check to ensure the correct-

ness of data placement.

This paper discusses the costs of node joining and leaving

with respect to two aspects: number of messages exchanged

and number of re-computations. We then present our ap-

proach to model the costs and evaluate the effect of node

joining and leaving with simulation of Tree Bucket and Straw

Bucket.

4. 1 Exchanged Messages

The number of messages exchanged can be classified into

two categories: intra-cluster and client-cluster. Intra-cluster

messages are exchanges that occur among the storage devices

within the cluster; client-cluster messages are exchanges be-

tween clients and the storage nodes in case of map change.

Note that clients also require an up-to-date map to correctly

locate date in storage nodes.

In a cluster with n storage nodes, it is obvious to see that

the minimum number of messages required to update the

cluster map on every node is also n. In case of CRUSH,

as discussed in [12] the hard upper bound on the number of

copies of a single update a node might receive is proportional

to µ, the number of objects on the storage nodes. The reason

behind this value is that each node has to communicate with

the nodes that store the replicas of the object. Simulation

results in [12] indicate that the actual number of duplicated

messages is at most as much as 20% of µ. The number of

intra-cluster messages is therefore bounded and does not vary

significantly across different systems with the same number

of nodes and objects.

On the other hand, the client also requires the information

of an up-to-date cluster map to access data objects. Given

there are often more clients than storage nodes, the number

of messages between clients and the cluster imposes signif-

icant costs on the system. In this paper, we focus on the

number of messages exchanged between clients and storage

nodes as the indicator for the costs of exchanged messages

in the system. In the event that a client with an out-of-date

map tries to access the cluster, the client will have to update

its map from the incorrectly accessed node, and access the

data again to a correct storage node. The number of mes-

sages incurred from such events is 2 for an access, which is

the number used in our simulation.

4. 2 Re-computation Costs

Hash-based distribution algorithms rely on the assumption

that the hash function provides a good degree of randomness

to achieve a balanced distribution. An object’s location is de-

termined by feeding this multi-input hash function a number

of parameters, including the object identifier and the cluster

map. This approach enables the clients and storage nodes

to independently calculate the placement of objects without

referring to a central management. At the same time, when

the cluster map changes due to node joining or leaving, it is

imperative to update the local copy of the map. Given that

hashing function can take up 45% of a hash-based algorithm’s

computation time [2], in a system with a large number of

objects, node joining and leaving can lead to considerable

performance penalty in terms of delay of access.

4. 3 Simulator

The simulator first builds a hierarchy map with a specified

number of devices. This cluster map is used as a physical

cluster for the simulation to evaluate data placement. The

simulator then generates a large number of objects, each with

a unique integer identifier. The objects are then assigned to

the storage devices based on the CRUSH distribution algo-

rithm. A large number of clients randomly requesting objects



from the storage clusters are then created. Here, we assume

that the clients access objects in a random manner, as ob-

ject identifiers are typically randomly assigned in an actual

system. During the access, the simulator then subsequently

changes the hierarchy map by removing or adding a number

of devices randomly. Since we assume that intra-cluster mes-

sage exchanged is necessary to maintain the uniform state

throughout the cluster, the simulator only tracks the num-

ber of messages introduced by the change, including map

updates and failed client requests. The simulator also keeps

track of the number of re-calculation performed due to the

change in topology. The results are recorded for different

cluster sizes, number of clients, and number of objects. The

setup of the environment for the implementation is shown in

Table 2.

CPU Intel Xeon E5620 (×2)

CPU Speed 2.40 GHz

Cores 4 (×2) (Hyper-Threading)

Memory 24 GB

OS Ubuntu 11.10

Programming Language C/C++

Table 2 Environment Setup for the Simulator

The simulator measures the number of re-calculations re-

quired in the event of node joining and leaving with differ-

ent topology sizes and configurations to evaluate the costs.

There are two aspects of this cost that are measured in this

report. The first one is computation time, which depends

on both the number of computations and the speed of the

distribution algorithm. The second one only concerns with

the number of computations that are executed to re-evaluate

the existing distribution.

In order to simulate exchanged messages, each client is as-

sumed to randomly access a random object from a pool of

object identifier. Although this random access pattern may

not correlate to one of a real system, it is adequately generic

to demonstrate the effect of node joining and leaving. Also,

since data objects are distributed randomly, this pattern in

the simulation is not too far off from actual access pattern.

If the client tries to access a data object with a non-up-to

date map, the storage node will sends back a new map, and

the client may need to re-access the data according to the

new information. The simulator then records the number

of exchanged map messages in the system when a node is

simulated to join or leave, resulting in topology change.

5. Results

5. 1 Computation Costs

Computation cost of a distribution algorithm can be cate-

gorized in to two categories: number of computations and

computation time. We examine the performance of Tree

Bucket and Straw Bucket over thirty millions ojbects with

different cluster sizes, ranging from 512 nodes to 2048 nodes.

The results are shown in Fig. 4 and Fig. 3.
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Figure 3 The largest number of computation that a node must

perform in case of topology change.

Figure 3 reports the number of computations in different

cluster sizes. In this paper, the maximum value of objects

that a node in a cluster must re-evalutated in case of topology

change is considered as the maximum number of computa-

tions per node in the given cluster. Due to the probablis-

tically uniform distribution of both Tree and Straw Bucket

algorithms, the maximum number of computations in each

case for the same cluster sizes varies litte. Note that with

larger clusters, with the same number of objects this cost

should decrease since the number of objects per node de-

creases accordingly.

Fig. 4 discusses the time required for a cluster to re-evalute

all the objects. Since objects are distributed in a probablistic

uniform manner accross the nodes, the computation time is

measured as the time from the start of the computation till

the finish of every node in the cluster. However, due to the

map propapation process to propagate changes in the cluster,

in reality the starting time may vary from systems to systems

with different data and cluster configuration. Therefore, to

simplify our measure, this paper reports the longest time

that some node in the cluster must undertake to re-evalute

the distribution of its objects. Such values are representa-

tive of the performance of the cluster in terms of computation

time. In Fig 4, the difference in terms of performance can

be easily observed, with the maximum of computation time

going as high as 2 seconds in a Straw-based cluster of size

512 nodes.
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Figure 4 The time required for CRUSH to re-evaluate the posi-

tions of every object with different cluster size. Storage

nodes are assumed to perform such calculations in par-

allel; the graph shows the longest time of some given

nodes with the largest nubmer of objects.

Both graphs show the effect of cluster sizes and number of

objects with regard to node joining and leaving costs. No-

tice that such costs are without the cost of communication

within the cluster itself, which vary depending on the config-

uration and the amount of data). This computation cost can

result in significant delay from the client’s side when trying

to access a server undergoing distribution evaluation, espe-

cially when the amount of data increases at a much faster

rate than capacity of storage systems.

5. 2 Exchanged Messages
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Figure 5 Number of messages exchanged in different topologies

with different number of clients. The cost increases lin-

early with the number of the clients

As previously discussed, our work focuses on the number of

messages exchanged between clients and the storage nodes.

This cost is shown in Fig. 5 with over thirty thousand clients

and different cluster sizes. A message is incurred when a

client with an out-of-date cluster map tries to access the

storage nodes. Figure 5 shows a near-linear graph of the

number of messages exchanged with different cluster sizes.

Since the update is done per storage node and client basis,

the total number of messages only depend on the number of

clients. As the number of clients increases, typically along

with the amount of data, this message exchange mechanism

may lead to network congestion and performance degration.

6. Conclustion and Future Work

In this paper, we have presented an evaluation of the cost

of node joining and leaving in a hash-based distributed stor-

age system, specifically, CRUSH. The result shows a signif-

icant increase in computation cost of node addition or re-

moval when the amount of data increases. Moreover, as

the amount of data increases, the number of clients tend

to increase accordingly, leading to higher costs in terms of

messages exchanged in the system. Along with the cost of

inter-cluster communication, the two categories of costs dis-

cussed in this paper can lead to considerable performance

degration in datacenter-oriented storage clusters.

In the future, we plan to apply similar measurements to

different hashing algorithms and evaluate the trade-off be-

tween performance costs and node joining or leaving. We also

plan to propose an approach that can significantly reduce

such costs while maintaining the favorable characteristics of

hash-based approaches. The approach can be improved by

incorporating real-world access pattern to better simulate

the effect of exchanging messages in a system. Finally, the

measurements described in this paper can be used as the

metrics for evaluating the performance of other datacenter-

oriented distribution algorithms in many other scenarios.
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