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Abstract MapReduce is a widely used framework for massive data processing. It was originally designed to overcome the 

I/O bottleneck, and enabled us to process Bigdata with the commodity clusters systems. However, several existing work have 

recently shown that the emerging high speed storage and network devices are capable to remove the I/O bottleneck and made 

the CPU the next serious bottleneck in the MapReduce framework. In this paper, we propose hardware accelerated (HA) 

Hadoop MapReduce framework and implement it on a Tilera's many-core processor board to overcome the CPU bottleneck. 

Our proposed solution offloads the main parts of Map and Reduce procedures, including the data parsing, sorting and merging. 

Based on our experimental evaluations, we verify the feasibility of our proposal. 

Keyword  Hardware Acceleration，MapReduce，Many-core，Hadoop 

 

1. Introduction 

The explosion of information has created a new area of 

research for computer scientists, creatively named Big 

data. However, the limited HDD I/O performance is a 

typical bottleneck in processing the massive amount of big 

data. Therefore, cluster-based parallel and distributed 

approach is proposed and achieves cost-effective total I/O 

performance. Recently, there is popular cluster-based big 

data processing application named Apache Hadoop [1] , 

which contains an open source implementation of Google 

MapReduce framework [2]. It further relieves the data 

moving overhead among servers by combining data 

storage and data computation into an integrated system, 

and enables massive data processing at high speed by the 

commodity clusters systems.  However, the data moving 

overhead required in MapReduce framework still makes 

the limited HDD I/O speed in the commodity server and 

the limited network bandwidth among servers the typical 

performance bottleneck in Hadoop. 

On the other hand, several kind of high speed storage 

devices and networks have emerged recently, such as Solid 

State Device (SSD) and Infiniband. The throughputs of 

these devices are faster than those of conventional HDD 

and connections by at least one order of magnitude. Our 

previous research [3] has shown that these devices are 

able to remove the previous bottlenecks in MapReduce 

cluster systems and verified the next bottleneck turns to be 

the limited CPU capability on the commodity cluster node.  

In addition, to improve the calculation capability of a 

single node in commodity clusters, many solutions have 

been proposed including the compound use of GP-GPU 

and CPU [4], the hardware accelerators by many-core or 

FPGA [5-9]. However, these works focused on the use of 

accelerators to improve general system performance; there 

is no offloading efficiency study or optimization for the 

MapReduce framework on these accelerated proposals. 

In light of the existing achievements from hardware 

technology and their widely use in commodity servers in 

near future, it is time to have a redesign of MapReduce 

framework and have a detailed performance study of 

MapReduce phases on the hardware accelerated platforms. 

In this paper, we propose our hardware accelerated 

(H.A.) Hadoop MapReduce framework which is 

implemented on a Tilera’s many-core processor board. In 

our prototype system, the main parts of Map and Reduce 

procedures, including data parsing, sorting and merging, 

are able to be offloaded. We verified the feasibility of our 

proposal in overcoming the CPU bottleneck through the 

benchmark experiments.  

The remainder of the paper is organized as follows. 

Section 2 gives the background of MapReduce framework 

and its performance issue. Section 3 presents the design of 

our H.A. MapReduce framework, the offloading processes 

and implementation. Experimental benchmarks and the 

evaluation results are described in Section 4. Section 5 

discusses the related work on H.A. MapReduce. We 

conclude the lessons we learned and our future work in 

Section 6. 



 

 

2. An Introduction of MapReduce  

 

2.1. MapReduce Framework 

MapReduce is a parallel programming model proposed 

by Google to facilitate large scale data processing in a 

distributed computing environment [2].   

The MapReduce’s programming model contains two 

phases, map and reduce. As shown in Figure 1, the input 

data to a computing task is split into many <K, V> tuples 

and a map function processes there pairs to generate a set 

of intermediate <K’, V’> pairs. The intermediate pairs 

with the same intermediate key are grouped together and 

passed to reduce function. The communication model 

within MapReduce is transparent to users to alleviate the 

development cost. MapReduce framework takes care of the 

parallel execution by issuing and managing the map and 

reduces tasks to computation nodes. It greatly relieves     

the complexity of designing parallel computing programs 

and provides efficiency for data-intensive applications [2].  

There are many implementations of MapReduce model 

on parallel computing platforms in the last decade [1, 2, 

4-9]. 

 

2.2. MapReduce Execution Overview  

Because Apache Hadoop [1] is the most popular and 

widely used open-source MapReduce implementation, we 

focus our discussion on Hadoop’s MapReduce hereafter.  

Hadoop contains a network file system, named Hadoop 

Distributed File System (HDFS), which is implemented as 

the storage layer for its MapReduce computation model.  

The HDFS consists of a single centralized management 

node, NameNode, which maintains all the metadata for the 

cluster along with multiple storage nodes;  DataNodes , 

which contain all the data in large blocks size (default 

64MB). The MapReduce computation model includes a 

single central management node, JobTracker, and multiple 

computation nodes, TaskTrackers . The JobTracker is 

responsible for initializing the specific map and reduce 

task for a submitted MapReduce job to a subset of the 

TaskTrackers in the cluster. The JobTracker also monitors 

the TaskTrackers’ state to ensure redundancy and timely 

task completion. A single TaskTracker can be assigned 

both map and reduce tasks with the same job. Therefore, 

the computation and storage is able to be integrated 

because the DataNodes and TaskTrackers may exist on the 

same physical node, which are so critical to the 

performance of MapReduce.  

There are five execution phases in Hadoop MapReduce. 

When a job is submitted to the JobTracker, it divides the 

input data into many data split and selects a number of 

TaskTracker and schedules them to run several MapTasks, 

one for each split.  

In the first phase, the MapTask loads a chunk of its 

input split data from HDFS to memory, de-serializes and 

parses it to extract key-value pairs. The mapping function 

in each MapTask converts the original <K, V> pairs into a 

set of intermediated results, which are records in the form 

of <K’, V’> pairs. The intermediate pairs are partitioned 

and sorted by the <K’> values, and buffered in memory. 

MapTask spills buffer content to disk based on a threshold 

mechanism in memory. It repeats the above sequence until 

all its input split data is processed.  

In the second phase, MapTask merges all the spill files 

on disk and generates a single MOF (Map Output File) to 

disk for its split data. Note that, this merge process may 

contain a ‘combine’ function in its final MOF generation 



 

 

to reduce the data transfer overhead during the next phase.   

In the third phase, the JobTracker selects a set of 

TaskTrackers to run ReduceTasks when MOFs are 

available. Each ReduceTask fetches its intended data 

partition (also called segment) from the MOF across the 

network once it has been generated by the MapTasks. This 

all-map-to-all-reduce phase is also named shuffle.  

The fourth phase starts after all the MOFs generation 

and shuffling is completed. The ReduceTask on each 

TaskTracker merges the shuffled segments into a single 

file, in which the data are partitioned and sorted by its key 

<K’>. Specifically, because the segments are already 

sorted and the memory size is generally insufficient for all 

the segments, segments only have a piece of their 

front-most data loaded in to memory for the comparison , 

sorting  and merging  processing. After writing the 

processed data back to HDD, the following data pieces in 

each segment will be loaded into memory and repeat the 

above sequence until all the segments data are processed. 

In the last phase, the merged results of every key <K’> 

in the fourth phase, as <K’, {V’segment _1, V’segment _2,..., 

V’segment _n}>, is reduced to the final <K’, V’’> value pair 

by the ReduceTask. This process is named reduce phase.  

 

2.3. Bottlenecks for MapReduce Performance 

In MapReduce execution, as described in Sec.2.2, both 

the map (map computing, map intermediate data splitting, 

and map merging) and reduce (reduce merging) processes 

require massive disk I/O operations.  

In addition, a reduce task will not start until all the 

MOFs are generated and all  its corresponding segments in 

these MOFs are shuffled to the reduce node. In other word, 

the shuffling phase may incur considerable performance 

overhead in MapReduce framework, especially for the 

shuffle-weight tasks (e.g., sorting, inverted-indexing). 

Note that the shuffle moves data from the map nodes’ disk 

rather than their memories, and through the cluster 

network. The affordable disk and network bandwidths  of 

commodity clusters incur great latency and become the 

bottleneck to the MapReduce performance [11]. 

However, several kinds of high speed storage and 

network devices, such as Solid State Device (SSD) and 

Infiniband, have emerged. While  conventional HDD has a 

transfer-rate of about 100MB/s, SATA-based SSD offers 

500MB/s, and PCI Express-based SSD offers several GB/s.  

In addition, it is possible to install a number of these 

devices, so that each node can realistically offer the 

storage bandwidth of ~10GB/s. As for the network, 10 

gigabit Ethernet is now widely used, and 40 gigabit 

Ethernet is available in the market. 100 Gigabit Ethernet 

will become common in the near future. Infiniband is 

another fascinating high speed network. Infiniband was 

widely applied to super computers. Vendors are now 

offering Infiniband interface cards for commodity servers. 

Current Infiniband network bandwidths are of the order of 

56Gbit/s. In near future, these high speed devices will be 

found in commodity servers.  

Our previous research [3]  has shown that these new 

devices eliminate the I/O bottleneck in MapReduce and 

the next bottleneck in MapReduce turns to be the limited 

CPU capability on the commodity cluster node.  

 

3. Proposed H.A. MapReduce framework  

 

3.1. Hardware Acceleration in MapReduce 

There are many reasons why the clock frequency 

increase had been becoming saturated.  The unsustainable 

level of power consumption implied by higher  clock rates 

is one of the obvious and stringent reasons. Advances now 

consist of increasing the number of cores. However, it 

seems unlikely that number of host CPU cores will reach 

levels sufficient to fully utilize the state-of-the-art storage 

and network devices.  Some improvement in MapReduce 

performance is possible by increasing the number of 

servers, but this is inefficient in terms of power 

consumption neither. 

In our solution, we extend the MapReduce framework 

with a hardware accelerator board equipped with a special  

processor such as FPGA or many core processors. This 

allows us to seamlessly increase the number of boards to  

keep up with performance demands and fully utilize 

state-of-the-art storage and network devices.  In addition, 

as discussed in Sec. 2.2, the five main data processing 

phases consisted in MapReduce are isolated from each 

other, which logically implies the feasibility in 

accelerating these phases individually.  

In this paper, we propose our H.A. MapReduce in which 

data mapping, data merging (including sorting) and data 

reducing processing are able to be offloaded onto the 

accelerators. 

 

3.2. Prototype Implementation 

We implement our prototype on a many core processor 

board TILEncore-Gx36, which is developed by Tilera [12]. 

It contains a cache-coherent mesh network of 36 tiles, 

where each tile houses a general  purpose processor, cache 



 

 

and a non-blocking router. Low power consumption is 

exciting feature of this processor. The power consumption 

of TILEncore-Gx36 is around 35W. One 1-GHz clocked 

CPU (36cores) and 8GB RAM was implemented on the 

acceleration board used in this  experiment. The board has 

a PCI Express interface, and communicates with its host 

via this interface. The board runs SMP Linux so that we 

can easily develop several  applications in user mode 

Now, we give the overview of our map-offloading, 

reduce-offloading and merge-offloading, respectively.  

At first, we give the overview of our proposed H.A. 

MapReduce framework. As shown in Figure 3, there are 

three main parts consisted in our framework: Hadoop task,  

host process, and on-board process.  

For map acceleration, when MapReduce executed, these 

offloaded tasks are launched on the accelerator board node. 

We implemented a hook in Map of Hadoop MapReduce  

such that calling it dispatches the tasks to the outside host  

process. This host process receives the data assigned to 

the tasks, splits them into chunks, and transfers them to 

the onboard process by using DMA transfer. The on-board 

process uses multi-thread processing, and performs 

key-value pair generation and sort by key in 30 parallel 

streams. The intermediate data is transferred back to the 

host disk, and wait to be sorted into one merged file 

(MOF) during the merge offload phase. When all data 

assigned in this MapTask is processed, control is returned 

to the Map task, and the MapReduce job is resumed.  

In our implementation, the accelerated merge phase 

contains data sorting processing implicitly. It is suitable 

for accelerating the merge phase in both MapTask and 

ReduceTask. To offload the intermediate file merging 

phase which happens at the end of a MapTask, Map of 

Hadoop MapReduce dispatches the MergeTasks to the 

outside host process. This host process transforms the data 

in the intermediate file assigned to each MergeTask into 

(key, value-pointer) format so as to reduce transfer amount  

and memory usage on Tilera board.  Multiple on-board 

processes perform key sorting and value combining (if the 

user designed) in parallel for one MergeTask, and output 

the merged file into host disk by using DMA transfer. Note 

that the returned merged file only contains (keys & 

value-pointers), the values are filled into the merge file on 

the host node. When all the intermediate files of a 

MapTask are processed, the next MapReduce job is 

resumed. To offload the merge phase which happens at the 

beginning of a ReduceTask, Reduce of Hadoop 

MapReduce dispatches the MergeTasks to the acceleration 

board in the similar way above. Note that the data to be 

transferred is the segments that are shuffled to current 

ReduceTask’s host node. Because the records in these 

segments are already sorted, we propose and implement a 

multi-phase merging strategy to make the merging 

acceleration of Reduce-Merge more efficient.   



 

 

By using this multi-phase merge strategy, as shown in 

Figure 6, segments of a ReduceTask are sequentially 

loaded onto Tilera board. Every two loaded segments will 

form a pair and be merged by a thread (core) in the highest 

phase. The merged output data of these threads are stored 

in a ring buffer. Threads of the lower phase will pull and 

merge the upper phase output, and store their own merged 

output in another ring buffer while releasing the memory 

space of the upper ring buffer. Thus these multiple phases 

form a pipeline so that all the Tilera cores are running in 

parallel to merge the segments.  Note that a maximum of 

[n/2] threads can be issued in the first phase of our 

implementation (n is the core number on Tilera board) .  

In addition, we propose and implement an index 

structure for the final output file in the multi -phase merge 

process. This index is useful in the reduce phase 

offloading, because the amount of data to be reduced in 

each core could be assigned as equal as possible  for better 

data skew balancing among the offloaded reduce tasks . 

Because of the paper length limitation, we only provide 

the indexed output file image below in Figure 7 

 

For reduce acceleration, the offloaded reduce tasks are 

launched on the accelerator board node. The host process 

of ReduceTasks reads the assigned merged file, splits them 

into chunks, and transfers them to the onboard  process by 

using DMA transfer. Note that, index information of the 

merged file is used, such that items of the same key are 

not split into different chunks and chunk sizes are as equal 

as possible. The on-board process uses multi-thread 

processing, and performs key-based value reduction in 30 

parallel streams for these chunks. The intermediate 

reduced data is transferred back to the host disk, and 

forms one final output file at the host node. Figure 8 

shows the image of our reduce acceleration flow. 

 

4. Experimental Evaluation  

In this section, we will examine the effectiveness of our 

H.A. MapReduce. We first demonstrate the multi-phase 

merge efficiency, with “Terasort” benchmark. Then, we 

provide a performance comparison between H.A. 

MapReduce and the original Hadoop MapReduce, whose 

tasks are not accelerated but only run on the hosting server, 

with “Grep” and “Wordcount” applications. 

Our experimental environment information is list below. 

 

Table 1.  Experimental Environment Specification  

 

 

Host 

Server 

CPU Intel E5-1660 (3.3GHz, 6-cores, HT) 

RAM 128GB (DDR3-1600, 16GBx8) 

Storage Intel SSD910 (PCIe 800GB) 

Tilera 

Board 

CPU TILEncore-Gx36(1.2GHz,30cores) 

RAM 16GB (DDR3-1333) 

 

4.1. Evaluation of Multi-phase Merge  

In this evaluation, we use the “Terasort” benchmark 

scripts and dataset. By executing the TeraGen script with 

Hadoop MapReduce, we generate 30GB text data first . 

Then, we execute the “Terasort” benchmark script on this 

dataset with two types of MapReduce strategies. The first 

type is called “single-merge” MapReduce, it offloads 

reduce-merge tasks to the Tilera board with the original 

Hadoop’s “singe-phase merge” solution. The second is 

called “multi-phase merge”, which offloads reduce-merge 

task with our proposed “multi-phase merge” solution in 

Section 3.3. The offloaded reduce-merge is defined as the 

fourth phase that described in Section 2.2. Note that both 

the offloaded reduce-merge tasks and the offloading 

hardware environment are totally same in both executions.  

Result in Figure 9 demonstrates the significance of our 

proposed “multi-phase merge” solution. As it shows,  the 

proposed solution completes the reduce-merge tasks with 

nearly 2.5 times less time than original hadoop’s “single 

merge” solution. We will further demonstrate the overall 

MapReduce performance achievement in the next section.   

 



 

 

 

4.2. Overall Evaluation of Proposed MapReduce 

In this evaluation, we provide an overall examination of 

the proposed H.A. MapReduce performance and compare 

it with that of original Hadoop’s MapReduce. 

Now we describe the detail of our experimental settings. 

At first, the original Hadoop on host PC initializes 30 map 

tasks. For the H.A. MapReduce evaluation, all these tasks 

are offloaded onto Tilera board and being processed by 30 

cores (1.2*30GHz) there at the same time in parallel. 

While for the original Hadoop’s MapReduce evaluation, 

we use the hosting PC’s resources, 12 hyper-threads 

(12*3.3GHz), to complete the whole map workload. Note 

that, only 12 tasks are online at the same time and each 

task is designated to one thread. Our reason for this setting 

is to reduce the catch switching and resource competition 

overhead within a single thread if multiple tasks are being 

processed there at the same time. The shuffle and merge 

phases are not offloaded here, they are completed by the 

hosting PC in both evaluations.  At last, we offload the 

reduce phase in offloaded MapReduce. 

We carry out above processes for three types of 

evaluations. The first two are “Grep” applications; we 

examine both Fuzzy and Exact match performance here. To 

fairly compare the two methods, we did not use Grep 

sample implementation included in the  original Hadoop 

distribution. We implemented a very simple Grep program 

using the java standard tokenizer to split words,  and regex 

to check the regular expression.  We used a 50GB randomly 

generated dictionary, and searched for words that matched 

the regular expression “a*b*c*1” or the exact string of 

“aabbcc1” in Fuzzy and Exact match, respectively. The 

third evaluation is a “Wordcount” application. We use the 

same method above to generate 10GB dictionary dataset, 

and we count the number of occurrences of each word. 

Note that the combiner in Map Task is enabled.  

Figure 10 shows our evaluation result . For both “Grep” 

applications, our proposed solution achieves almost the 

same execution time (81 & 75 seconds, respectively); 

because it has fully utilized the I/O bandwidth of our SSD 

775MB/s when loading the dataset from hotsing PC to 

Tilera board. For the “Wordcount” applications, the 

offloaded version completes in 135 seconds, which is 3.4 

times faster than original MapReduce.  

 

4.3. Efficiency Study 

The results of above experiment show the feasibility of 

our proposal. In this experiment, we used only one 

acceleration board which implemented one CPU with  has 

36 cores. We can seamlessly increase the performance  by 

increasing the number of boards depending on the  

performance needed.  

Note that the computation capability in hosting PC and 

the many-core Tilera board are almost same, so that  our 

competition results should be also comparable.  However, 

hardware accelerated version overwhelmed the original 

version. For example, although the clock speed of Tilera 

core is lower, its single map  task completion time (on 

average) is 3-5 times faster than that of hosting PC. This 

must be due to the overhead of Java. If a C version of 

MapReduce is implemented, we can achieve performance 

comparable to the hardware accelerated results given 

above. 

We also note that the merge phase of offloaded version 

in “Wordcount” application takes much longer time than 

original version. This is  because our current reduce 

offloading requires the MOF (that generated in 

reduce-merge phase) to be reduced should be located on 

disk. This generates disk I/O overhead at the end of 

reduce-merge phase. We will improve the merge part 

implementation as one of our future work.  

 

5. Related work on Hardware Acceleration  

There are some solutions proposed to improve the data 

processing capability of single node in commodity clusters 

by using some specialized hardware.  



 

 

Phoenix [5] implements a MapReduce model on a 

share-memory multi-core system to explore its parallelism.   

However, its memory and I/O usage of one task may 

severely affect others and this problem becomes critical 

when thread number increases for processing big data. 

Mars [4] accelerates MapReduce with a general GPU 

platform and achieved 1.5-16X higher speed than Phoenix. 

Although GPUs have an order of magnitude higher 

computation power and memory bandwidth compared with 

CPUs, it is not suitable for the data-intensive tasks such as 

word-count, and it is hard to program due to their 

special-purpose architecture design. In FPMR framework 

[6], dedicated processors are designed for different 

applications in which map and reduce operations are done  

by mappers and reducers on FPGA. The dynamic on-chip 

scheduling and efficient data control hide the task control, 

communication, and data synchronization away from 

designers. However, because the task scheduling and data 

dispatching are hard coded on chip, there is no 

reconfiguration ability in FPMR framework. [ 7] also 

proposes a FPGA based acceleration framework. It studies 

the scalability of this framework by increasing both FPGA 

boards and servers. However, it does not support  or study 

the offloading of merge and sort processes. The H.A. 

frameworks proposed in [8, 9] enable MR framework to 

run on hybrid clusters so as to exploit the capabilities of 

heterogeneous hardware. Their authors provide a 

scheduling policy for resource locating based on job 

progress. They also show the communication and 

synchronization overhead in data intensive applications 

may still hide the benefit of hardware accelerators, 

however, they used commodity network in their 

experiments. 

These previous works focus on using accelerators to 

improve commodity system performance and the 

MapReduce framework is deployed on their systems 

straightforwardly only to verify the feasibility of their 

proposal. No effort is paid in these works in studying or 

optimization MapReduce on the H.A. infrastructure.    

 

6. Future Work  

In our future work, we will support multiple Tilera 

boards in our framework for scalable and elastic 

offloading solution. And we will also study the FPGA 

board efficiency in improving the offloading performance, 

especially for the merge tasks, in our framework. We also 

feel interested in accelerating Hive applications by using 

our H.A. MapReduce proposal .  
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