

DEIM Forum 2014 A2-2

A Study of Many-Core Hardware Accelerated Hadoop MapReduce

Min Luo† Toshimori Honjo‡

Software Innovation Center, NTT Corporation

3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan

E-mail: †luo.min@lab.ntt.co.jp, ‡honjo.toshimori@lab.ntt.co.jp

Abstract MapReduce is a widely used framework for massive data processing. It was originally designed to overcome the

I/O bottleneck, and enabled us to process Bigdata with the commodity clusters systems. However, several existing work have

recently shown that the emerging high speed storage and network devices are capable to remove the I/O bottleneck and made

the CPU the next serious bottleneck in the MapReduce framework. In this paper, we propose hardware accelerated (HA)

Hadoop MapReduce framework and implement it on a Tilera's many-core processor board to overcome the CPU bottleneck.

Our proposed solution offloads the main parts of Map and Reduce procedures, including the data parsing, sorting and merging.

Based on our experimental evaluations, we verify the feasibility of our proposal.

Keyword Hardware Acceleration，MapReduce，Many-core，Hadoop

1. Introduction

The explosion of information has created a new area of

research for computer scientists, creatively named Big

data. However, the limited HDD I/O performance is a

typical bottleneck in processing the massive amount of big

data. Therefore, cluster-based parallel and distributed

approach is proposed and achieves cost-effective total I/O

performance. Recently, there is popular cluster-based big

data processing application named Apache Hadoop [1] ,

which contains an open source implementation of Google

MapReduce framework [2]. It further relieves the data

moving overhead among servers by combining data

storage and data computation into an integrated system,

and enables massive data processing at high speed by the

commodity clusters systems. However, the data moving

overhead required in MapReduce framework still makes

the limited HDD I/O speed in the commodity server and

the limited network bandwidth among servers the typical

performance bottleneck in Hadoop.

On the other hand, several kind of high speed storage

devices and networks have emerged recently, such as Solid

State Device (SSD) and Infiniband. The throughputs of

these devices are faster than those of conventional HDD

and connections by at least one order of magnitude. Our

previous research [3] has shown that these devices are

able to remove the previous bottlenecks in MapReduce

cluster systems and verified the next bottleneck turns to be

the limited CPU capability on the commodity cluster node.

In addition, to improve the calculation capability of a

single node in commodity clusters, many solutions have

been proposed including the compound use of GP-GPU

and CPU [4], the hardware accelerators by many-core or

FPGA [5-9]. However, these works focused on the use of

accelerators to improve general system performance; there

is no offloading efficiency study or optimization for the

MapReduce framework on these accelerated proposals.

In light of the existing achievements from hardware

technology and their widely use in commodity servers in

near future, it is time to have a redesign of MapReduce

framework and have a detailed performance study of

MapReduce phases on the hardware accelerated platforms.

In this paper, we propose our hardware accelerated

(H.A.) Hadoop MapReduce framework which is

implemented on a Tilera’s many-core processor board. In

our prototype system, the main parts of Map and Reduce

procedures, including data parsing, sorting and merging,

are able to be offloaded. We verified the feasibility of our

proposal in overcoming the CPU bottleneck through the

benchmark experiments.

The remainder of the paper is organized as follows.

Section 2 gives the background of MapReduce framework

and its performance issue. Section 3 presents the design of

our H.A. MapReduce framework, the offloading processes

and implementation. Experimental benchmarks and the

evaluation results are described in Section 4. Section 5

discusses the related work on H.A. MapReduce. We

conclude the lessons we learned and our future work in

Section 6.

2. An Introduction of MapReduce

2.1. MapReduce Framework

MapReduce is a parallel programming model proposed

by Google to facilitate large scale data processing in a

distributed computing environment [2].

The MapReduce’s programming model contains two

phases, map and reduce. As shown in Figure 1, the input

data to a computing task is split into many <K, V> tuples

and a map function processes there pairs to generate a set

of intermediate <K’, V’> pairs. The intermediate pairs

with the same intermediate key are grouped together and

passed to reduce function. The communication model

within MapReduce is transparent to users to alleviate the

development cost. MapReduce framework takes care of the

parallel execution by issuing and managing the map and

reduces tasks to computation nodes. It greatly relieves

the complexity of designing parallel computing programs

and provides efficiency for data-intensive applications [2].

There are many implementations of MapReduce model

on parallel computing platforms in the last decade [1, 2,

4-9].

2.2. MapReduce Execution Overview

Because Apache Hadoop [1] is the most popular and

widely used open-source MapReduce implementation, we

focus our discussion on Hadoop’s MapReduce hereafter.

Hadoop contains a network file system, named Hadoop

Distributed File System (HDFS), which is implemented as

the storage layer for its MapReduce computation model.

The HDFS consists of a single centralized management

node, NameNode, which maintains all the metadata for the

cluster along with multiple storage nodes; DataNodes ,

which contain all the data in large blocks size (default

64MB). The MapReduce computation model includes a

single central management node, JobTracker, and multiple

computation nodes, TaskTrackers . The JobTracker is

responsible for initializing the specific map and reduce

task for a submitted MapReduce job to a subset of the

TaskTrackers in the cluster. The JobTracker also monitors

the TaskTrackers’ state to ensure redundancy and timely

task completion. A single TaskTracker can be assigned

both map and reduce tasks with the same job. Therefore,

the computation and storage is able to be integrated

because the DataNodes and TaskTrackers may exist on the

same physical node, which are so critical to the

performance of MapReduce.

There are five execution phases in Hadoop MapReduce.

When a job is submitted to the JobTracker, it divides the

input data into many data split and selects a number of

TaskTracker and schedules them to run several MapTasks,

one for each split.

In the first phase, the MapTask loads a chunk of its

input split data from HDFS to memory, de-serializes and

parses it to extract key-value pairs. The mapping function

in each MapTask converts the original <K, V> pairs into a

set of intermediated results, which are records in the form

of <K’, V’> pairs. The intermediate pairs are partitioned

and sorted by the <K’> values, and buffered in memory.

MapTask spills buffer content to disk based on a threshold

mechanism in memory. It repeats the above sequence until

all its input split data is processed.

In the second phase, MapTask merges all the spill files

on disk and generates a single MOF (Map Output File) to

disk for its split data. Note that, this merge process may

contain a ‘combine’ function in its final MOF generation

to reduce the data transfer overhead during the next phase.

In the third phase, the JobTracker selects a set of

TaskTrackers to run ReduceTasks when MOFs are

available. Each ReduceTask fetches its intended data

partition (also called segment) from the MOF across the

network once it has been generated by the MapTasks. This

all-map-to-all-reduce phase is also named shuffle.

The fourth phase starts after all the MOFs generation

and shuffling is completed. The ReduceTask on each

TaskTracker merges the shuffled segments into a single

file, in which the data are partitioned and sorted by its key

<K’>. Specifically, because the segments are already

sorted and the memory size is generally insufficient for all

the segments, segments only have a piece of their

front-most data loaded in to memory for the comparison ,

sorting and merging processing. After writing the

processed data back to HDD, the following data pieces in

each segment will be loaded into memory and repeat the

above sequence until all the segments data are processed.

In the last phase, the merged results of every key <K’>

in the fourth phase, as <K’, {V’segment _1, V’segment _2,...,

V’segment _n}>, is reduced to the final <K’, V’’> value pair

by the ReduceTask. This process is named reduce phase.

2.3. Bottlenecks for MapReduce Performance

In MapReduce execution, as described in Sec.2.2, both

the map (map computing, map intermediate data splitting,

and map merging) and reduce (reduce merging) processes

require massive disk I/O operations.

In addition, a reduce task will not start until all the

MOFs are generated and all its corresponding segments in

these MOFs are shuffled to the reduce node. In other word,

the shuffling phase may incur considerable performance

overhead in MapReduce framework, especially for the

shuffle-weight tasks (e.g., sorting, inverted-indexing).

Note that the shuffle moves data from the map nodes’ disk

rather than their memories, and through the cluster

network. The affordable disk and network bandwidths of

commodity clusters incur great latency and become the

bottleneck to the MapReduce performance [11].

However, several kinds of high speed storage and

network devices, such as Solid State Device (SSD) and

Infiniband, have emerged. While conventional HDD has a

transfer-rate of about 100MB/s, SATA-based SSD offers

500MB/s, and PCI Express-based SSD offers several GB/s.

In addition, it is possible to install a number of these

devices, so that each node can realistically offer the

storage bandwidth of ~10GB/s. As for the network, 10

gigabit Ethernet is now widely used, and 40 gigabit

Ethernet is available in the market. 100 Gigabit Ethernet

will become common in the near future. Infiniband is

another fascinating high speed network. Infiniband was

widely applied to super computers. Vendors are now

offering Infiniband interface cards for commodity servers.

Current Infiniband network bandwidths are of the order of

56Gbit/s. In near future, these high speed devices will be

found in commodity servers.

Our previous research [3] has shown that these new

devices eliminate the I/O bottleneck in MapReduce and

the next bottleneck in MapReduce turns to be the limited

CPU capability on the commodity cluster node.

3. Proposed H.A. MapReduce framework

3.1. Hardware Acceleration in MapReduce

There are many reasons why the clock frequency

increase had been becoming saturated. The unsustainable

level of power consumption implied by higher clock rates

is one of the obvious and stringent reasons. Advances now

consist of increasing the number of cores. However, it

seems unlikely that number of host CPU cores will reach

levels sufficient to fully utilize the state-of-the-art storage

and network devices. Some improvement in MapReduce

performance is possible by increasing the number of

servers, but this is inefficient in terms of power

consumption neither.

In our solution, we extend the MapReduce framework

with a hardware accelerator board equipped with a special

processor such as FPGA or many core processors. This

allows us to seamlessly increase the number of boards to

keep up with performance demands and fully utilize

state-of-the-art storage and network devices. In addition,

as discussed in Sec. 2.2, the five main data processing

phases consisted in MapReduce are isolated from each

other, which logically implies the feasibility in

accelerating these phases individually.

In this paper, we propose our H.A. MapReduce in which

data mapping, data merging (including sorting) and data

reducing processing are able to be offloaded onto the

accelerators.

3.2. Prototype Implementation

We implement our prototype on a many core processor

board TILEncore-Gx36, which is developed by Tilera [12].

It contains a cache-coherent mesh network of 36 tiles,

where each tile houses a general purpose processor, cache

and a non-blocking router. Low power consumption is

exciting feature of this processor. The power consumption

of TILEncore-Gx36 is around 35W. One 1-GHz clocked

CPU (36cores) and 8GB RAM was implemented on the

acceleration board used in this experiment. The board has

a PCI Express interface, and communicates with its host

via this interface. The board runs SMP Linux so that we

can easily develop several applications in user mode

Now, we give the overview of our map-offloading,

reduce-offloading and merge-offloading, respectively.

At first, we give the overview of our proposed H.A.

MapReduce framework. As shown in Figure 3, there are

three main parts consisted in our framework: Hadoop task,

host process, and on-board process.

For map acceleration, when MapReduce executed, these

offloaded tasks are launched on the accelerator board node.

We implemented a hook in Map of Hadoop MapReduce

such that calling it dispatches the tasks to the outside host

process. This host process receives the data assigned to

the tasks, splits them into chunks, and transfers them to

the onboard process by using DMA transfer. The on-board

process uses multi-thread processing, and performs

key-value pair generation and sort by key in 30 parallel

streams. The intermediate data is transferred back to the

host disk, and wait to be sorted into one merged file

(MOF) during the merge offload phase. When all data

assigned in this MapTask is processed, control is returned

to the Map task, and the MapReduce job is resumed.

In our implementation, the accelerated merge phase

contains data sorting processing implicitly. It is suitable

for accelerating the merge phase in both MapTask and

ReduceTask. To offload the intermediate file merging

phase which happens at the end of a MapTask, Map of

Hadoop MapReduce dispatches the MergeTasks to the

outside host process. This host process transforms the data

in the intermediate file assigned to each MergeTask into

(key, value-pointer) format so as to reduce transfer amount

and memory usage on Tilera board. Multiple on-board

processes perform key sorting and value combining (if the

user designed) in parallel for one MergeTask, and output

the merged file into host disk by using DMA transfer. Note

that the returned merged file only contains (keys &

value-pointers), the values are filled into the merge file on

the host node. When all the intermediate files of a

MapTask are processed, the next MapReduce job is

resumed. To offload the merge phase which happens at the

beginning of a ReduceTask, Reduce of Hadoop

MapReduce dispatches the MergeTasks to the acceleration

board in the similar way above. Note that the data to be

transferred is the segments that are shuffled to current

ReduceTask’s host node. Because the records in these

segments are already sorted, we propose and implement a

multi-phase merging strategy to make the merging

acceleration of Reduce-Merge more efficient.

By using this multi-phase merge strategy, as shown in

Figure 6, segments of a ReduceTask are sequentially

loaded onto Tilera board. Every two loaded segments will

form a pair and be merged by a thread (core) in the highest

phase. The merged output data of these threads are stored

in a ring buffer. Threads of the lower phase will pull and

merge the upper phase output, and store their own merged

output in another ring buffer while releasing the memory

space of the upper ring buffer. Thus these multiple phases

form a pipeline so that all the Tilera cores are running in

parallel to merge the segments. Note that a maximum of

[n/2] threads can be issued in the first phase of our

implementation (n is the core number on Tilera board) .

In addition, we propose and implement an index

structure for the final output file in the multi -phase merge

process. This index is useful in the reduce phase

offloading, because the amount of data to be reduced in

each core could be assigned as equal as possible for better

data skew balancing among the offloaded reduce tasks .

Because of the paper length limitation, we only provide

the indexed output file image below in Figure 7

For reduce acceleration, the offloaded reduce tasks are

launched on the accelerator board node. The host process

of ReduceTasks reads the assigned merged file, splits them

into chunks, and transfers them to the onboard process by

using DMA transfer. Note that, index information of the

merged file is used, such that items of the same key are

not split into different chunks and chunk sizes are as equal

as possible. The on-board process uses multi-thread

processing, and performs key-based value reduction in 30

parallel streams for these chunks. The intermediate

reduced data is transferred back to the host disk, and

forms one final output file at the host node. Figure 8

shows the image of our reduce acceleration flow.

4. Experimental Evaluation

In this section, we will examine the effectiveness of our

H.A. MapReduce. We first demonstrate the multi-phase

merge efficiency, with “Terasort” benchmark. Then, we

provide a performance comparison between H.A.

MapReduce and the original Hadoop MapReduce, whose

tasks are not accelerated but only run on the hosting server,

with “Grep” and “Wordcount” applications.

Our experimental environment information is list below.

Table 1. Experimental Environment Specification

Host

Server

CPU Intel E5-1660 (3.3GHz, 6-cores, HT)

RAM 128GB (DDR3-1600, 16GBx8)

Storage Intel SSD910 (PCIe 800GB)

Tilera

Board

CPU TILEncore-Gx36(1.2GHz,30cores)

RAM 16GB (DDR3-1333)

4.1. Evaluation of Multi-phase Merge

In this evaluation, we use the “Terasort” benchmark

scripts and dataset. By executing the TeraGen script with

Hadoop MapReduce, we generate 30GB text data first .

Then, we execute the “Terasort” benchmark script on this

dataset with two types of MapReduce strategies. The first

type is called “single-merge” MapReduce, it offloads

reduce-merge tasks to the Tilera board with the original

Hadoop’s “singe-phase merge” solution. The second is

called “multi-phase merge”, which offloads reduce-merge

task with our proposed “multi-phase merge” solution in

Section 3.3. The offloaded reduce-merge is defined as the

fourth phase that described in Section 2.2. Note that both

the offloaded reduce-merge tasks and the offloading

hardware environment are totally same in both executions.

Result in Figure 9 demonstrates the significance of our

proposed “multi-phase merge” solution. As it shows, the

proposed solution completes the reduce-merge tasks with

nearly 2.5 times less time than original hadoop’s “single

merge” solution. We will further demonstrate the overall

MapReduce performance achievement in the next section.

4.2. Overall Evaluation of Proposed MapReduce

In this evaluation, we provide an overall examination of

the proposed H.A. MapReduce performance and compare

it with that of original Hadoop’s MapReduce.

Now we describe the detail of our experimental settings.

At first, the original Hadoop on host PC initializes 30 map

tasks. For the H.A. MapReduce evaluation, all these tasks

are offloaded onto Tilera board and being processed by 30

cores (1.2*30GHz) there at the same time in parallel.

While for the original Hadoop’s MapReduce evaluation,

we use the hosting PC’s resources, 12 hyper-threads

(12*3.3GHz), to complete the whole map workload. Note

that, only 12 tasks are online at the same time and each

task is designated to one thread. Our reason for this setting

is to reduce the catch switching and resource competition

overhead within a single thread if multiple tasks are being

processed there at the same time. The shuffle and merge

phases are not offloaded here, they are completed by the

hosting PC in both evaluations. At last, we offload the

reduce phase in offloaded MapReduce.

We carry out above processes for three types of

evaluations. The first two are “Grep” applications; we

examine both Fuzzy and Exact match performance here. To

fairly compare the two methods, we did not use Grep

sample implementation included in the original Hadoop

distribution. We implemented a very simple Grep program

using the java standard tokenizer to split words, and regex

to check the regular expression. We used a 50GB randomly

generated dictionary, and searched for words that matched

the regular expression “a*b*c*1” or the exact string of

“aabbcc1” in Fuzzy and Exact match, respectively. The

third evaluation is a “Wordcount” application. We use the

same method above to generate 10GB dictionary dataset,

and we count the number of occurrences of each word.

Note that the combiner in Map Task is enabled.

Figure 10 shows our evaluation result . For both “Grep”

applications, our proposed solution achieves almost the

same execution time (81 & 75 seconds, respectively);

because it has fully utilized the I/O bandwidth of our SSD

775MB/s when loading the dataset from hotsing PC to

Tilera board. For the “Wordcount” applications, the

offloaded version completes in 135 seconds, which is 3.4

times faster than original MapReduce.

4.3. Efficiency Study

The results of above experiment show the feasibility of

our proposal. In this experiment, we used only one

acceleration board which implemented one CPU with has

36 cores. We can seamlessly increase the performance by

increasing the number of boards depending on the

performance needed.

Note that the computation capability in hosting PC and

the many-core Tilera board are almost same, so that our

competition results should be also comparable. However,

hardware accelerated version overwhelmed the original

version. For example, although the clock speed of Tilera

core is lower, its single map task completion time (on

average) is 3-5 times faster than that of hosting PC. This

must be due to the overhead of Java. If a C version of

MapReduce is implemented, we can achieve performance

comparable to the hardware accelerated results given

above.

We also note that the merge phase of offloaded version

in “Wordcount” application takes much longer time than

original version. This is because our current reduce

offloading requires the MOF (that generated in

reduce-merge phase) to be reduced should be located on

disk. This generates disk I/O overhead at the end of

reduce-merge phase. We will improve the merge part

implementation as one of our future work.

5. Related work on Hardware Acceleration

There are some solutions proposed to improve the data

processing capability of single node in commodity clusters

by using some specialized hardware.

Phoenix [5] implements a MapReduce model on a

share-memory multi-core system to explore its parallelism.

However, its memory and I/O usage of one task may

severely affect others and this problem becomes critical

when thread number increases for processing big data.

Mars [4] accelerates MapReduce with a general GPU

platform and achieved 1.5-16X higher speed than Phoenix.

Although GPUs have an order of magnitude higher

computation power and memory bandwidth compared with

CPUs, it is not suitable for the data-intensive tasks such as

word-count, and it is hard to program due to their

special-purpose architecture design. In FPMR framework

[6], dedicated processors are designed for different

applications in which map and reduce operations are done

by mappers and reducers on FPGA. The dynamic on-chip

scheduling and efficient data control hide the task control,

communication, and data synchronization away from

designers. However, because the task scheduling and data

dispatching are hard coded on chip, there is no

reconfiguration ability in FPMR framework. [7] also

proposes a FPGA based acceleration framework. It studies

the scalability of this framework by increasing both FPGA

boards and servers. However, it does not support or study

the offloading of merge and sort processes. The H.A.

frameworks proposed in [8, 9] enable MR framework to

run on hybrid clusters so as to exploit the capabilities of

heterogeneous hardware. Their authors provide a

scheduling policy for resource locating based on job

progress. They also show the communication and

synchronization overhead in data intensive applications

may still hide the benefit of hardware accelerators,

however, they used commodity network in their

experiments.

These previous works focus on using accelerators to

improve commodity system performance and the

MapReduce framework is deployed on their systems

straightforwardly only to verify the feasibility of their

proposal. No effort is paid in these works in studying or

optimization MapReduce on the H.A. infrastructure.

6. Future Work

In our future work, we will support multiple Tilera

boards in our framework for scalable and elastic

offloading solution. And we will also study the FPGA

board efficiency in improving the offloading performance,

especially for the merge tasks, in our framework. We also

feel interested in accelerating Hive applications by using

our H.A. MapReduce proposal .

Reference

[1] Apache Hadoop (2014.2). http://hadoop.apache.org

[2] J. Dean and S. Ghemawat. “MapReduce: Simplified
data processing on large clusters”, In 6th Symposium
on Operating System Design and Implementation
(OSDI '04), 2004.

[3] T. Honjo and K. Oikawa, “Hardware acceleration of
Hadoop MapReduce”, IEEE Intl. Conf. on Big Data
(IEEE BigData '13), 2013.

[4] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T.
Wang. “Mars: a MapReduce framework on graphics
processors”, In Proc. of the 17th intl. Conf. on
Parallel architectures and compilation techniques
(PACT '08), 2008.

[5] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis, “Evaluating MapReduce for
Multi-core and Multiprocessor Systems”, In Proc. of
the 13th Intel. Symposium on High Performance
Computer Architecture (HPCA '07) , 2007

[6] S. Yi, B.Wang, J. Yan, Y. Wang, N. Xu, H. Yang:
“FPMR: MapReduce framework on FPGA”, In Proc.
of the 18th Annual ACM/SIGDA Int l. Symposium on
Field Programmable Gate Arrays, pp. 93–102, 2010.

[7] D. Yin, G. Li, K. Huang, “Scalable MapReduce
Framework on FPGA Accelerated Commodity
Hardware”, NEW2AN/ruSMART’12, LNCS 7469,
280-294, 2012

[8] Y. Becerra, V. Beltran, D. Carrera, M. Gonzalez, J.
Torres, and E. Ayguade, “Speeding Up Distributed
MapReduce Applications Using Hardware
Accelerators”, in Proc. of the Intel. Conf. on Parallel
Processing (ICPP '09). 2009.

[9] J. Polo, D. Carrera, Y. Becerra, V. Beltran, J. Torres,
and E. Ayguade, “Performance Management of
Accelerated MapReduce Workloads in Heterogeneous
Clusters”, in Proc. of the Intel. Conf. on Parallel
Processing (ICPP '10), 2010.

[10] F. Ahmad, S. Lee, M. Thottethodi, T.N. Vijaykumar,
“PUMA: Purdue MapReduce Benchmarks Suite”,
Purdue Technical Report TR-ECE-12-11, 2012.

[11] F. Ahmad, S. Lee, M. Thottethodi, T. N. Vijaykumar
“MapReduce with communication overlap (MaRCO)”,
J. Parallel Distrib. Comput. 73, 5, 608-620, 2013.

[12] Tilera Corporation: TILE-Gx8036 Processor
Specification Brief (online), available from
<http://www.tilera.com/sites/default/files/productbri
efs/TILEGx8036_PB033-02_web.pdf>.

http://hadoop.apache.org/

