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Abstract  With the increase of streaming information sources, stream processing has been an important research issue. In 

this paper, we introduce the designated event-based stream processing scheme in the stream processing engine. Different from 

the traditional stream processing scheme, the query results are supposed to be generated only when tuples come from 

designated streams specified by the user. After introducing the proposed scheme, we consider its implementation. We discuss 

some important implementation internals of the stream processing engine and show an efficient designated event-based 

execution scheme. We also consider multi-queries which is a common situation in the stream processing engine. The 

experiment shows the advantages of the proposed execution scheme. 
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1. Introduction 

Recent years, the amount of unbounded generated data is  

growing rapidly like network packets, stock trades and 

sensor data. Such unbounded generated data is called  

streams. Many stream processing engines have been 

developed to deal with the streams like STREAM [1], S4 [2],  

Borealis[3], D-stream [4] and Storm[5]. Users can register  

continuous queries on these systems and a continuous  

query is often involved with multiple stream sources. The  

traditional stream processing scheme is that whenever data  

comes from any stream sources, relevant continuous  

queries are supposed to be evaluated and the query results 

would be generated. However, such a processing scheme is 

not always what users want. There is another kind of 

requirement - sometimes, the result is supposed to be  

generated only when data comes from particular streams 

specified by the user. For example, suppose there are two 

stream sources: one is Twitter stream, and the other  is 

News stream. Users may want to get the related Tweets in  

30 minutes on the arrival of a piece of news. Then the  

users are able to analyze the query results to see want  

people are thinking about the latest news. In this case, the 

query results are to be triggered by the News stream only 

on the arrival of a piece of news. On the arrival of a Tweet,  

the query is not supposed to be evaluated and no query 

result would be generated. We call such a processing 

scheme as designated event-based stream processing  

scheme which implies the query results are triggered by 

the designated streams. The traditional stream processing 

engine dose not support the designated event -based 

processing. In this paper, we introduce the designated 

event-based processing scheme in the stream processing 

engine and propose an efficient execution scheme for it.  

This paper is organized as follows. In section 2, we talk 

about related works. In section 3, we show the traditional  

stream processing model. Section 4 describes designated 

event-based processing scheme. Some basic 

implementation internals are explained in section 5. A 

naive execution scheme is explained in section 6 and a  

smart execution scheme is proposed in section 7. How to 

deal with multiple queries is explained in section 8.  

Section 9 shows the experimental evaluation and section 

10 gives the future work and conclusion.  

 

2. Related Works 

STREAM [1] is a traditional stream processing engine. It  

accepts CQL[6] queries and translates a query into an 

execution plan containing leaf operators to get tuples from 

input streams. No matter which leaf operator accepts an  

input tuple, the whole execution plan tree is executed and 

a query result is generated. It does not support the 

designated event-based processing.  

Discretized stream [4] is a distributed real time 

computation system. It processes streams in small time 

intervals. The input tuples in each interval a re processed 

in a batch and then a query result is generated. However, it  

does not support the designated event -based processing.  

Storm [5] is also a distributed real time computation 

system. Topology can be registered in the system. The  

topology contains spout nodes getting input tuples from 



 

 

stream sources. Whenever a spout node gets input tuples,  

the whole topology is evaluated and a query result is 

generated.  

 

3. Traditional Stream Processing Model 

Before explaining designated event -based stream 

processing, we introduce the traditional  stream processing 

model first.  

How to perform queries on streams which contains 

unbounded data? We are familiar with the relational  

databases which contain a finite number of tuples in each  

table. Some relational operators, such as join and 

aggregation, must work on the finite number of tuples.  

When performing the relational operators on a stream, the  

stream must first be ‘cut’ into a relation containing a finite 

number of tuples, then the relational operators can work 

on the relation. In the stream processing engine, window 

operators are used to generate a relation from a stream.  

Type Name  

Stream-to-relation Tuple-based window 

Time-based window 

Relation-to-relation Selection 

Projection  

Join  

Groupby_aggregation 

Relation-to-stream Istream  

Rstream 

Dstream 

Table 1 Operator  

Three classes of operators are defined over streams and 

relations. They are stream-to-relation operators,  

relation-to-relation operators and relation-to-stream 

operators. A stream-to-relation operator takes a stream as  

an input and produces a relation as an output. A 

relation-to-relation operator takes a relation as an input  

and produces a relation as an output. A relation-to-stream 

operator takes a relation as an input and produces a stream 

as an output.  

Some basic operators are shown in Table 1.  A 

tuple-based window operator is a stream-to-relation 

operator and it always has a window size, then it generates  

a relation containing the number of tuples equal to the  

window size. For example, a tuple-based window operator  

with a window size of 20 always generates a relation 

containing the latest 20 tuples. After generating relations  

from streams, the relation-to-relation operators can take  

such relations as inputs and perform relational logics such 

as selection, projection, join and so on. The outputs of 

these operators are also relations.  

In the traditional stream processing engine, a query is 

supposed to be executed whenever new tuples arrive at the 

system. It is easy to know that whenever a new tuple  

arrives at the system, the window operator responsible for  

accepting it would generate a new relation which possibly 

has a large overlapping with the previous one. It is the 

same with the relation-to-relation operators. It is not a 

wise way to always output the query results which have a 

large overlapping. Usually, we want to output the 

difference between the current output relation and the 

previous output one and that is what relation-to-stream 

operators do. An Istream operator always outputs the new 

tuples in the current output relation.  

 

4. Designated Event-based Stream Processing  

 

Figure 1 Query Example 

In this section, we explain the designated event -based 

stream processing scheme. We first define a discrete,  

ordered time domain T. A general time instant t is any 

value from T. In the traditional stream processing engine,  

a tuple may arrive at the system at any general time instant.  

The query result may be generated at any general time 

instant. As for our designated stream processing, the query 

is supposed to be evaluated only when tuples come from 

particular streams specified by the user. We call them 

master streams. The timestamps of tuples coming from 

master streams form a discrete, ordered time domain T’⊆  

T, and a master time instant t’ is any value from T’. The  

query is supposed to be evaluated and generate query 

result only at t’.  

Now we introduce the designated event -based stream 

processing scheme. In a query plan tree, the innermost  

operators are stream-to-relation operators and the  

outermost operators is a relation -to-stream operator  

producing a stream. The query result is supposed to be  

generated only when a new tuple comes from a master  

stream at the master time instant t’. We denote  the result  

of the query at t’ as S(t’). We emphasize that the  

traditional stream processing scheme is a special case of 

our scheme. Just specify all streams as master streams, 

then the results of our scheme are the same as the  

traditional one. 

We give an example of the proposed processing scheme. 

Let us consider the query in Figure 1.  This query intents  

for a join operation on the latest two tuples from Stream1  



 

 

 
Figure 2 Example input 

 

  

Figure 3 Query result  

and the latest two tuples from Stream2 on the x attribute .  

Stream1 is a master stream. The example input tuples are 

shown in Figure 2. The tuples arrive at the stream 

processing engine in a timestamp order from stream1 and 

stream2. Each tuple coming from stream1 contains an x  

attribute and a y attribute. Each tuple coming from 

stream2 contains just an x attribute. Because str eam2 is a  

master stream and tuples arrive at the stream processing 

engine at time instants 2 and 6, the output tuples are 

generated at  time instants 2 and 6 as shown in the Figure  

3.  

 

5. Incremental Execution Scheme 

Before discussing the implementation of the designated 

stream processing scheme, we look into some important  

implementation internals of the stream processing engine.  

A window operator generates a relation from a stream. 

Whenever a new tuple comes to the window operator from 

a stream, the output relation of the window operator would 

be changed - the new coming tuple is inserted in the 

relation and some tuples may go outside of the window 

and are deleted from the relation. As for implementation,  

it is inefficient for the window operator or  

relation-to-relation operators to work on the whole  

relation each time. Since a relation is changing in a  

timestamp order including newly arriving tuples and 

omitted obsolete tuples, it is more efficient to do 

incremental computation. We append each tuple with a  

plus tag or a minus tag as well as a tuple identifier. A plus  

tag represents for a newly arriving tuple and a minus tag 

represents for an obsolete tuple. The tuple identifier is  

used to uniquely identify a tuple. Now an element is 

represented by <t,id,T,s> consisting of a  timestamp, 

identifier, tag and tuple.  

Now stream-to-relation and relation-to-relation  

 

Figure 4 Query plan tree  

 

  Figure 5 Window operator 

operators output the update of the relation instead of the  

whole relation.  Some operators like join, aggregation and 

window operators, need to know the whole relation for  

execution. These operators maintain synopses in  

themselves to save the current state.  For example, a 

row-based window operator with a window size of 2 

contains a synopsis always saving the latest 2 tuples.  

In order to make the behaviour of operators and synopsis  

more clearly, we give an example. The query in Figure 1 is  

translated into a query plan tree in Figure 4. We use the  

input tuples in Figure 2. On the arrival of the tuple at time 

instant 4 from Stream1, the internal state of the window 

operator w1 changes as what we show in Figure 5. Its  

window size is 2 and the window synopsis always saves  

the latest 2 tuples. On the arrival of the tuple <4,4,6,1>, 

this tuple is inserted into the window synopsis, the number  

of tuples in the synopsis exceeds the window size , and the  

oldest one should be deleted from the synopsis. Then the  

output of the window operator are tuple <4,1,-,5,2> and 

tuple <4,4,+,6,1>. The status of the window operator  after  

the procssing is shown in Figure 5 on the right.  

 

6. Naive execution scheme 

6.1.  Execution model 

We first present a naive execution scheme for  

implementing the designated event -based processing. The  

basic idea is very simple – everything works the same with  

the traditional stream processing engine except for the  

relation-to-stream operator which is the outer most  

operator in the query plan tree. Our relation-to-stream 

operators generate output only on the arrival of tuples 

originated by the master streams. The whole query plan 

tree is evaluated on the arrival of tuples coming from any 

stream source.  



 

 

 

6.2.  Master mark 

In order to know which tuples are triggered by master  

streams, each tuple is given a master mark to tell whether  

this tuple is originated by a master stream or not. The  

value of master mark is true or false. If a tuple has a true 

master mark, it means this tuple is originated by master  

streams. Now an element is represented by <t,id,T,M,s> 

where M represents for a master mark.  

Then we can know whether a tuple is originated by a 

master stream by looking into the master mark.  But how to 

make sure all tuples originated by master streams have  

true master marks? The approach is very simple. At first,  

we give a true master mark to each tuple coming from 

master streams and false master marks to other tuples.  

Then when an operator accepts an input tuple, all output  

tuples generated based on the input tuple are given the  

same master mark and timestamp as the input tuple.  

 

6.3.  Istream Operator 

 

Figure 6 Istream Operator Input Sequence  

 

Figure 7 Istream Operator Execution Example  

Now we introduce our Istream operator whose behavior is  

changed. Our Istream operator always outputs the new 

tuples triggered by arrivals of tuples with master marks .  

So it should maintain a synopsis saving the input relation.  

When an Istream operator accepts an input tuple, we first  

see whether it is a plus or minus tagged tuple. If it is a 

plus tagged tuple, the tuple would be inserted into the 

synopsis, and if it is a minus tagged tuple, the 

corresponding tuple is deleted from the synopsis.  Next, it  

sees whether it is a true master mark tuple or a false  

master mark tuple. If it is a true master mark tuple, all of 

the tuples in the synopsis are output as the query results 

and the synopsis is cleaned up.  If it is a false master mark 

tuple, it does nothing. With the input tuples shown in  

Figure 3, the input tuple sequence of the Istream operator  

is shown in Figure 6. The internal state of the Istream 

operator on the arrival of the tuple at time instant 6 is  

shown in Figure 7 on the left. The synopsis is empty and 

the input tuple is a plus tagged tuple with a true master  

mark. Then this tuple is inserted into the synopsis first and 

then all the tuples in the synopsis is output and the  

synopsis is cleaned up as shown in the Figure 7 on the 

right. We can see the tuples at time instant 2 and 6 have 

true master marks and the Istream operator generates  

output tuples when receiving them. The query result is  

exactly what we show in Figure 5.  

   

6.4.  Shortcoming 

We can see that the whole query is evaluated on the arrival  

of tuples coming from any stream sources. On the arrival  

of a tuple coming from a master stream, some tuples from 

non-master streams may have gone outside the given 

window size and obsolete. They do not contribute to any 

query result, but they are processed by the whole query 

plan tree and many useless intermediate tuples may be  

generated.  

  For example, the tuple at time instant 3 from stream 1 in  

the Figure 3 does not contribute to any query result.  

However, such non-master stream tuples are processed by 

the whole query and generate many useless intermediate  

tuples because they are pushed to the following operators  

as soon as they comes to the window operator. Instead of 

that, we can change the behavior of the window operator  

to delete useless tuples from the beginning and reduce the  

processing cost. We call it smart approach.  

 

7. Smart execution scheme 

7.1.  Execution model 

One query has two execution modes, waiting mode and 

eager mode. At first, it is in the waiting mode and  system 

gets input tuples from the information sources. If a tuple  

comes from the non-master stream, the query remains in 

the waiting mode. If a tuple comes from a master stream, 

the query’s state changes to the eager mode and all  

operators are triggered. After the execution of all  

operators, the query’s state  comes back to the waiting 

mode.  

The behavior of the window operator is changed.  We 

introduce two kinds of window operators: one is  master  

window operator, which is for master streams, and the  

other one is smart window operator , which is for  

non-master streams. The behavior of master window 

operators remains the same as we described in Section 4.3,  

while the behavior of smart window operators is different.   

 



 

 

7.2.  Smart Window Operator 

 

Figure 8 Smart Window Operator  

 

Figure 9 Istream Operator Input Sequence  

When the query is in the waiting mode, a smart window 

operator accepts all input tuples. Then, it buffers the 

tuples in the window synopsis and does not output them.  

When the query is in the eager mode, a smart window 

operator outputs all buffered tuples.  

The synopsis of the smart window operator is divided 

into two parts to specify which tuples are buffered. One is  

output part saving the tuples that have been output and the  

other is non-output part saving the tuples that have not  

been output. In the waiting mode, the incoming tuples are  

inserted in the non-output part. In the eager mode, the  

tuples in the non-output part are output and move to the 

output part.  

When a tuple is inserted in the smart window operator 

in the waiting mode, the number of tuples in the synopsis  

may exceeds the window size and the oldest  tuple should  

be deleted from the synopsis. If the oldest tuple is in the  

output part, it means this tuple has been processed by the  

whole query plan tree and the window operator should  

output the corresponding minus tuple. If the oldest tuple is  

in the non-output  part, it means this tuple has not been 

processed by the whole plan tree and it can be deleted 

from the synopsis directly without generating any plus or  

minus tuples.  

Again we look back to our example of input tuples in 

Figure 2. The tuple arrives at time instant 5 from stream 1.  

The state of the smart window operator is shown in the  

Figure 8. Two tuples have already saved in the non-output  

part of the window synopsis. When the coming tuple is 

inserted in the synopsis, the oldest tuple should be del eted.  

Because the oldest tuple which has a tuple identifier of 4 

is in the non-output part, it can be deleted directly. Then 

this tuple is only processed by the smart window operator  

instead of the whole query plan tree in the naive approach.  

The input tuple sequence of the Istream operator is shown 

in Figure 9. Because less intermediate tuples are generated,  

we can see its length is shorter than the sequence in Figure  

6. It generates the same results.   

7.3.  Analysis 

On the arrival of tuples from non-master streams, the  

coming tuples are buffered in the smart window operators.  

If the number of the buffered tuples exceeds the window 

size, the overflowing tuples are just thrown away. Such 

tuples are not processed by the whole query plan tree, thus 

the processing cost will be reduced.  

 

8. Multiple query 

There are always more than one query registered in a  

stream processing engine. We think about how to support  

designated event -based processing dealing with multiple 

queries. If some common streams are involved in   

multiple queries, a direct thought is sharing the window 

operators for these common streams. However, though a 

stream may be involved in multiple queries, the  

corresponding window operator may behaves differently 

for different queries. For example, tuple-based or  

time-based, master or smart. Even for the tuple -based 

window operator, the window sizes may also be different.  

Furthermore, different queries have different execution 

modes. A smart window operator acts differently in the  

eager mode and waiting mode. How to deal with the  

situation that a shared window operator runs in the eager  

mode for one query and in the waiting mode for another  

query?  

  Because a shared-window operator works differently 

depending on the query, it is better to abstract a virtual 

window operator and let different queries register their 

own strategies in it . The strategy contains (window type,  

window size, output queue, query id) . Window type’s  

value may be tuple smart, tuple master, time smart or time 

master. The memory space of the synopsis belonging to 

the virtual window operator is shared among multiple 

queries. The overlapping tuples belonging to different  

queries are also shared in the synopsis. During the  

execution of a virtual window operator, it executes all  

registered strategies. It can get the execution mode by 

query id, execute its logic, and push output tuples to the 

corresponding output queue. Different strategies also 

should maintain their own pointers to save the position 

information of tuples in the synopsis.  



 

 

 

Figure 10 Multi-query example 

 

Figure 11 Query plan tree for multi -query   

We give an example of multi -queries in Figure 10 which 

is translated into a query plan tree in Figure 11. As  

window operator w1 is shared by multiple queries, i t is a 

virtual window operator and is registered with strategies  

(row master, 50, q1, Query1) and (row smart, 100, q2,  

Query2). On the arrival of a tuple from stream1, query1 is  

in the eager mode, while query2 is in the waiting mode. 

During the execution of the window operator w1, it  

processes its processing logic for each strategy and 

generates the output  tuples. We can see that the memory 

space of the latest 50 tuples are shared between query1 

and query2 thus the memory cost is reduced.  

 

9. Experiment 

 

Figure 12 Query evaluation time 

 

Figure 13 Processed tuple number  

We have implemented both the naive and the smart 

execution schemes of the designated event -based 

processing.  

We show experimental results using two streams: 

stream1 is not a master stream and stream2 is a master  

stream. The query is the one presented in Figure 1. The  

incoming rate of stream1 is 5 thousand tuple/s. We 

changed the incoming rate of stream2 from 1 thousand 

tuple/s to 5 thousand tuple/s. We  executed the query for 5  

minutes and observed the time spent on processing the  

query as well as the total number of tuples processed by 

the whole query plan tree for both the naive approach and 

the smart approach.   

The time spent is shown in Figure 12 and the number of 

tuples processed is shown in Figure 13. We can see when 

the input rate of master stream2 is smaller than stream1, 

the time of the smart approach is less than the naive  

approach because many intermediate useless tuples are not  

generated. When we increase the input rate of master  

stream2, it approaches to the naive one because less  

buffered tuples are deleted from the window operator  

directly.  

 

10. Conclusion and Future Work 

We have proposed designated event -based stream 

processing and proposed its efficient execution scheme. 

We have developed a stream processing engine  

implementing the proposed execution scheme, and shown 

its advantages by experiments.  

Future research issues include more elaborated analysis 

of the proposal and the parallel execution of multiple 

queries in the designated event -based stream processing.  
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