

DEIM Forum 2014 D3-2

An Efficient Execution Scheme for Designated Event-based Stream Processing

Yan Wang† and Hiroyuki Kitagawa‡

†Graduate School of Systems and Information Engineering, University of Tsukuba

‡Faculty of Engineering, Information and Systems, University of Tsukuba

1-1-1 Tennodai, Tsukuba 305-8573, Japan

E-mail: †wangyan@kde.cs.tsukuba.ac.jp, ‡kitagawa@ kde.cs.tsukuba.ac.jp

Abstract With the increase of streaming information sources, stream processing has been an important research issue. In

this paper, we introduce the designated event-based stream processing scheme in the stream processing engine. Different from

the traditional stream processing scheme, the query results are supposed to be generated only when tuples come from

designated streams specified by the user. After introducing the proposed scheme, we consider its implementation. We discuss

some important implementation internals of the stream processing engine and show an efficient designated event-based

execution scheme. We also consider multi-queries which is a common situation in the stream processing engine. The

experiment shows the advantages of the proposed execution scheme.

Keyword Stream processing engine，Designated event-based processing

1. Introduction

Recent years, the amount of unbounded generated data is

growing rapidly like network packets, stock trades and

sensor data. Such unbounded generated data is called

streams. Many stream processing engines have been

developed to deal with the streams like STREAM [1], S4 [2],

Borealis[3], D-stream [4] and Storm[5]. Users can register

continuous queries on these systems and a continuous

query is often involved with multiple stream sources. The

traditional stream processing scheme is that whenever data

comes from any stream sources, relevant continuous

queries are supposed to be evaluated and the query results

would be generated. However, such a processing scheme is

not always what users want. There is another kind of

requirement - sometimes, the result is supposed to be

generated only when data comes from particular streams

specified by the user. For example, suppose there are two

stream sources: one is Twitter stream, and the other is

News stream. Users may want to get the related Tweets in

30 minutes on the arrival of a piece of news. Then the

users are able to analyze the query results to see want

people are thinking about the latest news. In this case, the

query results are to be triggered by the News stream only

on the arrival of a piece of news. On the arrival of a Tweet,

the query is not supposed to be evaluated and no query

result would be generated. We call such a processing

scheme as designated event-based stream processing

scheme which implies the query results are triggered by

the designated streams. The traditional stream processing

engine dose not support the designated event -based

processing. In this paper, we introduce the designated

event-based processing scheme in the stream processing

engine and propose an efficient execution scheme for it.

This paper is organized as follows. In section 2, we talk

about related works. In section 3, we show the traditional

stream processing model. Section 4 describes designated

event-based processing scheme. Some basic

implementation internals are explained in section 5. A

naive execution scheme is explained in section 6 and a

smart execution scheme is proposed in section 7. How to

deal with multiple queries is explained in section 8.

Section 9 shows the experimental evaluation and section

10 gives the future work and conclusion.

2. Related Works

STREAM [1] is a traditional stream processing engine. It

accepts CQL[6] queries and translates a query into an

execution plan containing leaf operators to get tuples from

input streams. No matter which leaf operator accepts an

input tuple, the whole execution plan tree is executed and

a query result is generated. It does not support the

designated event-based processing.

Discretized stream [4] is a distributed real time

computation system. It processes streams in small time

intervals. The input tuples in each interval a re processed

in a batch and then a query result is generated. However, it

does not support the designated event -based processing.

Storm [5] is also a distributed real time computation

system. Topology can be registered in the system. The

topology contains spout nodes getting input tuples from

stream sources. Whenever a spout node gets input tuples,

the whole topology is evaluated and a query result is

generated.

3. Traditional Stream Processing Model

Before explaining designated event -based stream

processing, we introduce the traditional stream processing

model first.

How to perform queries on streams which contains

unbounded data? We are familiar with the relational

databases which contain a finite number of tuples in each

table. Some relational operators, such as join and

aggregation, must work on the finite number of tuples.

When performing the relational operators on a stream, the

stream must first be ‘cut’ into a relation containing a finite

number of tuples, then the relational operators can work

on the relation. In the stream processing engine, window

operators are used to generate a relation from a stream.

Type Name

Stream-to-relation Tuple-based window

Time-based window

Relation-to-relation Selection

Projection

Join

Groupby_aggregation

Relation-to-stream Istream

Rstream

Dstream

Table 1 Operator

Three classes of operators are defined over streams and

relations. They are stream-to-relation operators,

relation-to-relation operators and relation-to-stream

operators. A stream-to-relation operator takes a stream as

an input and produces a relation as an output. A

relation-to-relation operator takes a relation as an input

and produces a relation as an output. A relation-to-stream

operator takes a relation as an input and produces a stream

as an output.

Some basic operators are shown in Table 1. A

tuple-based window operator is a stream-to-relation

operator and it always has a window size, then it generates

a relation containing the number of tuples equal to the

window size. For example, a tuple-based window operator

with a window size of 20 always generates a relation

containing the latest 20 tuples. After generating relations

from streams, the relation-to-relation operators can take

such relations as inputs and perform relational logics such

as selection, projection, join and so on. The outputs of

these operators are also relations.

In the traditional stream processing engine, a query is

supposed to be executed whenever new tuples arrive at the

system. It is easy to know that whenever a new tuple

arrives at the system, the window operator responsible for

accepting it would generate a new relation which possibly

has a large overlapping with the previous one. It is the

same with the relation-to-relation operators. It is not a

wise way to always output the query results which have a

large overlapping. Usually, we want to output the

difference between the current output relation and the

previous output one and that is what relation-to-stream

operators do. An Istream operator always outputs the new

tuples in the current output relation.

4. Designated Event-based Stream Processing

Figure 1 Query Example

In this section, we explain the designated event -based

stream processing scheme. We first define a discrete,

ordered time domain T. A general time instant t is any

value from T. In the traditional stream processing engine,

a tuple may arrive at the system at any general time instant.

The query result may be generated at any general time

instant. As for our designated stream processing, the query

is supposed to be evaluated only when tuples come from

particular streams specified by the user. We call them

master streams. The timestamps of tuples coming from

master streams form a discrete, ordered time domain T’⊆

T, and a master time instant t’ is any value from T’. The

query is supposed to be evaluated and generate query

result only at t’.

Now we introduce the designated event -based stream

processing scheme. In a query plan tree, the innermost

operators are stream-to-relation operators and the

outermost operators is a relation -to-stream operator

producing a stream. The query result is supposed to be

generated only when a new tuple comes from a master

stream at the master time instant t’. We denote the result

of the query at t’ as S(t’). We emphasize that the

traditional stream processing scheme is a special case of

our scheme. Just specify all streams as master streams,

then the results of our scheme are the same as the

traditional one.

We give an example of the proposed processing scheme.

Let us consider the query in Figure 1. This query intents

for a join operation on the latest two tuples from Stream1

Figure 2 Example input

Figure 3 Query result

and the latest two tuples from Stream2 on the x attribute .

Stream1 is a master stream. The example input tuples are

shown in Figure 2. The tuples arrive at the stream

processing engine in a timestamp order from stream1 and

stream2. Each tuple coming from stream1 contains an x

attribute and a y attribute. Each tuple coming from

stream2 contains just an x attribute. Because str eam2 is a

master stream and tuples arrive at the stream processing

engine at time instants 2 and 6, the output tuples are

generated at time instants 2 and 6 as shown in the Figure

3.

5. Incremental Execution Scheme

Before discussing the implementation of the designated

stream processing scheme, we look into some important

implementation internals of the stream processing engine.

A window operator generates a relation from a stream.

Whenever a new tuple comes to the window operator from

a stream, the output relation of the window operator would

be changed - the new coming tuple is inserted in the

relation and some tuples may go outside of the window

and are deleted from the relation. As for implementation,

it is inefficient for the window operator or

relation-to-relation operators to work on the whole

relation each time. Since a relation is changing in a

timestamp order including newly arriving tuples and

omitted obsolete tuples, it is more efficient to do

incremental computation. We append each tuple with a

plus tag or a minus tag as well as a tuple identifier. A plus

tag represents for a newly arriving tuple and a minus tag

represents for an obsolete tuple. The tuple identifier is

used to uniquely identify a tuple. Now an element is

represented by <t,id,T,s> consisting of a timestamp,

identifier, tag and tuple.

Now stream-to-relation and relation-to-relation

Figure 4 Query plan tree

 Figure 5 Window operator

operators output the update of the relation instead of the

whole relation. Some operators like join, aggregation and

window operators, need to know the whole relation for

execution. These operators maintain synopses in

themselves to save the current state. For example, a

row-based window operator with a window size of 2

contains a synopsis always saving the latest 2 tuples.

In order to make the behaviour of operators and synopsis

more clearly, we give an example. The query in Figure 1 is

translated into a query plan tree in Figure 4. We use the

input tuples in Figure 2. On the arrival of the tuple at time

instant 4 from Stream1, the internal state of the window

operator w1 changes as what we show in Figure 5. Its

window size is 2 and the window synopsis always saves

the latest 2 tuples. On the arrival of the tuple <4,4,6,1>,

this tuple is inserted into the window synopsis, the number

of tuples in the synopsis exceeds the window size , and the

oldest one should be deleted from the synopsis. Then the

output of the window operator are tuple <4,1,-,5,2> and

tuple <4,4,+,6,1>. The status of the window operator after

the procssing is shown in Figure 5 on the right.

6. Naive execution scheme

6.1. Execution model

We first present a naive execution scheme for

implementing the designated event -based processing. The

basic idea is very simple – everything works the same with

the traditional stream processing engine except for the

relation-to-stream operator which is the outer most

operator in the query plan tree. Our relation-to-stream

operators generate output only on the arrival of tuples

originated by the master streams. The whole query plan

tree is evaluated on the arrival of tuples coming from any

stream source.

6.2. Master mark

In order to know which tuples are triggered by master

streams, each tuple is given a master mark to tell whether

this tuple is originated by a master stream or not. The

value of master mark is true or false. If a tuple has a true

master mark, it means this tuple is originated by master

streams. Now an element is represented by <t,id,T,M,s>

where M represents for a master mark.

Then we can know whether a tuple is originated by a

master stream by looking into the master mark. But how to

make sure all tuples originated by master streams have

true master marks? The approach is very simple. At first,

we give a true master mark to each tuple coming from

master streams and false master marks to other tuples.

Then when an operator accepts an input tuple, all output

tuples generated based on the input tuple are given the

same master mark and timestamp as the input tuple.

6.3. Istream Operator

Figure 6 Istream Operator Input Sequence

Figure 7 Istream Operator Execution Example

Now we introduce our Istream operator whose behavior is

changed. Our Istream operator always outputs the new

tuples triggered by arrivals of tuples with master marks .

So it should maintain a synopsis saving the input relation.

When an Istream operator accepts an input tuple, we first

see whether it is a plus or minus tagged tuple. If it is a

plus tagged tuple, the tuple would be inserted into the

synopsis, and if it is a minus tagged tuple, the

corresponding tuple is deleted from the synopsis. Next, it

sees whether it is a true master mark tuple or a false

master mark tuple. If it is a true master mark tuple, all of

the tuples in the synopsis are output as the query results

and the synopsis is cleaned up. If it is a false master mark

tuple, it does nothing. With the input tuples shown in

Figure 3, the input tuple sequence of the Istream operator

is shown in Figure 6. The internal state of the Istream

operator on the arrival of the tuple at time instant 6 is

shown in Figure 7 on the left. The synopsis is empty and

the input tuple is a plus tagged tuple with a true master

mark. Then this tuple is inserted into the synopsis first and

then all the tuples in the synopsis is output and the

synopsis is cleaned up as shown in the Figure 7 on the

right. We can see the tuples at time instant 2 and 6 have

true master marks and the Istream operator generates

output tuples when receiving them. The query result is

exactly what we show in Figure 5.

6.4. Shortcoming

We can see that the whole query is evaluated on the arrival

of tuples coming from any stream sources. On the arrival

of a tuple coming from a master stream, some tuples from

non-master streams may have gone outside the given

window size and obsolete. They do not contribute to any

query result, but they are processed by the whole query

plan tree and many useless intermediate tuples may be

generated.

 For example, the tuple at time instant 3 from stream 1 in

the Figure 3 does not contribute to any query result.

However, such non-master stream tuples are processed by

the whole query and generate many useless intermediate

tuples because they are pushed to the following operators

as soon as they comes to the window operator. Instead of

that, we can change the behavior of the window operator

to delete useless tuples from the beginning and reduce the

processing cost. We call it smart approach.

7. Smart execution scheme

7.1. Execution model

One query has two execution modes, waiting mode and

eager mode. At first, it is in the waiting mode and system

gets input tuples from the information sources. If a tuple

comes from the non-master stream, the query remains in

the waiting mode. If a tuple comes from a master stream,

the query’s state changes to the eager mode and all

operators are triggered. After the execution of all

operators, the query’s state comes back to the waiting

mode.

The behavior of the window operator is changed. We

introduce two kinds of window operators: one is master

window operator, which is for master streams, and the

other one is smart window operator , which is for

non-master streams. The behavior of master window

operators remains the same as we described in Section 4.3,

while the behavior of smart window operators is different.

7.2. Smart Window Operator

Figure 8 Smart Window Operator

Figure 9 Istream Operator Input Sequence

When the query is in the waiting mode, a smart window

operator accepts all input tuples. Then, it buffers the

tuples in the window synopsis and does not output them.

When the query is in the eager mode, a smart window

operator outputs all buffered tuples.

The synopsis of the smart window operator is divided

into two parts to specify which tuples are buffered. One is

output part saving the tuples that have been output and the

other is non-output part saving the tuples that have not

been output. In the waiting mode, the incoming tuples are

inserted in the non-output part. In the eager mode, the

tuples in the non-output part are output and move to the

output part.

When a tuple is inserted in the smart window operator

in the waiting mode, the number of tuples in the synopsis

may exceeds the window size and the oldest tuple should

be deleted from the synopsis. If the oldest tuple is in the

output part, it means this tuple has been processed by the

whole query plan tree and the window operator should

output the corresponding minus tuple. If the oldest tuple is

in the non-output part, it means this tuple has not been

processed by the whole plan tree and it can be deleted

from the synopsis directly without generating any plus or

minus tuples.

Again we look back to our example of input tuples in

Figure 2. The tuple arrives at time instant 5 from stream 1.

The state of the smart window operator is shown in the

Figure 8. Two tuples have already saved in the non-output

part of the window synopsis. When the coming tuple is

inserted in the synopsis, the oldest tuple should be del eted.

Because the oldest tuple which has a tuple identifier of 4

is in the non-output part, it can be deleted directly. Then

this tuple is only processed by the smart window operator

instead of the whole query plan tree in the naive approach.

The input tuple sequence of the Istream operator is shown

in Figure 9. Because less intermediate tuples are generated,

we can see its length is shorter than the sequence in Figure

6. It generates the same results.

7.3. Analysis

On the arrival of tuples from non-master streams, the

coming tuples are buffered in the smart window operators.

If the number of the buffered tuples exceeds the window

size, the overflowing tuples are just thrown away. Such

tuples are not processed by the whole query plan tree, thus

the processing cost will be reduced.

8. Multiple query

There are always more than one query registered in a

stream processing engine. We think about how to support

designated event -based processing dealing with multiple

queries. If some common streams are involved in

multiple queries, a direct thought is sharing the window

operators for these common streams. However, though a

stream may be involved in multiple queries, the

corresponding window operator may behaves differently

for different queries. For example, tuple-based or

time-based, master or smart. Even for the tuple -based

window operator, the window sizes may also be different.

Furthermore, different queries have different execution

modes. A smart window operator acts differently in the

eager mode and waiting mode. How to deal with the

situation that a shared window operator runs in the eager

mode for one query and in the waiting mode for another

query?

 Because a shared-window operator works differently

depending on the query, it is better to abstract a virtual

window operator and let different queries register their

own strategies in it . The strategy contains (window type,

window size, output queue, query id) . Window type’s

value may be tuple smart, tuple master, time smart or time

master. The memory space of the synopsis belonging to

the virtual window operator is shared among multiple

queries. The overlapping tuples belonging to different

queries are also shared in the synopsis. During the

execution of a virtual window operator, it executes all

registered strategies. It can get the execution mode by

query id, execute its logic, and push output tuples to the

corresponding output queue. Different strategies also

should maintain their own pointers to save the position

information of tuples in the synopsis.

Figure 10 Multi-query example

Figure 11 Query plan tree for multi -query

We give an example of multi -queries in Figure 10 which

is translated into a query plan tree in Figure 11. As

window operator w1 is shared by multiple queries, i t is a

virtual window operator and is registered with strategies

(row master, 50, q1, Query1) and (row smart, 100, q2,

Query2). On the arrival of a tuple from stream1, query1 is

in the eager mode, while query2 is in the waiting mode.

During the execution of the window operator w1, it

processes its processing logic for each strategy and

generates the output tuples. We can see that the memory

space of the latest 50 tuples are shared between query1

and query2 thus the memory cost is reduced.

9. Experiment

Figure 12 Query evaluation time

Figure 13 Processed tuple number

We have implemented both the naive and the smart

execution schemes of the designated event -based

processing.

We show experimental results using two streams:

stream1 is not a master stream and stream2 is a master

stream. The query is the one presented in Figure 1. The

incoming rate of stream1 is 5 thousand tuple/s. We

changed the incoming rate of stream2 from 1 thousand

tuple/s to 5 thousand tuple/s. We executed the query for 5

minutes and observed the time spent on processing the

query as well as the total number of tuples processed by

the whole query plan tree for both the naive approach and

the smart approach.

The time spent is shown in Figure 12 and the number of

tuples processed is shown in Figure 13. We can see when

the input rate of master stream2 is smaller than stream1,

the time of the smart approach is less than the naive

approach because many intermediate useless tuples are not

generated. When we increase the input rate of master

stream2, it approaches to the naive one because less

buffered tuples are deleted from the window operator

directly.

10. Conclusion and Future Work

We have proposed designated event -based stream

processing and proposed its efficient execution scheme.

We have developed a stream processing engine

implementing the proposed execution scheme, and shown

its advantages by experiments.

Future research issues include more elaborated analysis

of the proposal and the parallel execution of multiple

queries in the designated event -based stream processing.

Reference
[1] A. Arasu, et al. STREAM: The Stanford Data Stream

Management System, 2004.

[2] L. Neumeyer, et al. S4: distributed stream computing
platform. In KDCloud, 2010.

[3] D. J. Abadi, et al. The design of the Borealis stream
processing engine. In Proceedings of the Conference
on Innovative Data Systems Research, CIDR, 2005.

[4] M. Zaharia, et al. Resilient Distributed Datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In 9 th USENIX NSDI, Apr. 2012.

[5] http://storm-project.net/

[6] A. Arasu, et al. CQL: A Language for Continuous
Queries over Streams and Relations. In Proc. of the
Ninth Intl. Conf. on Database Programming
Languages, September 2003.

