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Abstract   Estimating the population activity patterns between two or more spike trains is a fundamental problem in studying 

neural coding in computational neuroscience. In recent years, there are many different methods proposed to build a framework 

to deal with these problems by using spike train metric. Here we suggest a kernel method for multichannel spike trains that can 

provide an opportunity to measure spike trains. As kernels can be used for various tasks in machine learning, including 

regression, clustering and dimension reduction. We believe this method is effective at measuring multichannel spike trains 

simulated using a distance.   
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1. Introduction 
 

In our brain, there are over 100 billion neurons, and they 
communicate with each other using pulses by generating 
characteristic electrical signals called action potentials or 
spikes. We don’t know how these neurons transmit 
information rapidly and what relationship they have 
between neural response and stimulus attributes. 

We not only want to find the structure of neuron 
networks, but also want to know information contents of 
neural signals system. It is therefore important to know 
how information is coded by neurons. To this end many 
researchers are working on the analysis of spike trains.  

A spike train is a series of spikes or action potentials 
fired by a neuron. Although there is a method to 
electrically visualize action potential propagation and 
network topology in cortical neurons [1], it can’t explain 
how spike works and the temporal structure of spike trains. 
There is a big motivation to understand how to analyze 
and decode the information expressed by spike trains in 
computational neuroscience. Recently, there are some 
publicly available spike train data. Also there is some 

work that uses distances to evaluate similarity of spike 
trains. The aim of this paper is to propose kernels for 
spike trains. Specifically we use coupled escape rate 
model (CERM) [2] to simulate spike trains data, and apply 
the memoryless cross intensity kernel, which is calculated 
by convolving the spike trains and a smoothing function. 
We then obtain a distance between spike trains [3][4][5]. 
  The remainder of this paper is organized as follows. The 
second section describes related work about spike train 
distances and spike train kernels. In the third and fourth 
section we will describe the memoryless cross intensity 
for multichannel spike train model and discuss the coupled 
escape rate model to simulate multichannel spike trains. 
And then, a distance is used to evaluate them. Finally, we 
will give the conclusion. 

 
2.Related work 

 

A way to construct a mathematical framework for spike 
train is the basic idea to define a distance between spike 
trains in a spike metric space [6]. Various distances have 
been proposed for measuring the similarity between spike 



 

 

trains, including the Victor-Purpura distance [6], van 
Rossum distance [6], ISI (Inter Spike Interval) distance [7] 
and spike distance [8]. 

The Victor-Purpura metric [9][10] and the van Rossum 
metric [9][10] both compare two different responses from 
the same neurons corresponding to different trials. 
 

3 .  M ode l  
 
3 . 1 .  M e m o r y l e s s  c r o s s  i n t e n s i t y  f o r  s p i k e  t r a i n s  
 
There are many studies in the literature to use inner 
products to solve general machine learning problems. Here 
we use two spike train metrics to define inner products on 
functional representations of spike trains [3][4][5]. 

Consider two spike trains, x, y, x=(x1, x2, ... , xi), y=(y1, 
y2, ... , yj), with i, j   ∈ N, and represent the spike train as a 
sum of Dirac delta functions 𝑥(𝑡) = δ(t − t!)! , then  
define the intensity function by convolving the spike train 

and a smoothing function h, as in λ  (t) = h(t − t!)! . Here, 
ti is the timing of the ith spike. The inner product can be 
simply defined as  

 
      k(x,y  ) = λ!  (t)λ!  (t) dt         ( 1 )  

 
This is the memoryless cross intensity kernel (mCI kernel) 
proposed by Antonio Paiva [3]. In our experiments, we 
used a Gaussian function for h, which is a very common 
choice in the analysis of spike trains. 
 
3 . 2 .  Memoryless cross intensity for multichannel spike 
trains 
 
Our aim in this paper is to extend the mCI kernel to 
multichannel spike trains, and evaluate it using simulated 
data. 

Consider a case where there is a pair of spike train 
metrics x, y. Let x=(x1, x2, ... , xi) and y=(y1, y2, ... , yj) 

where each xi and yj indicates a spike trains and i, j   ∈ N. 
Here, xi will be called a component of x. 

The most general way to define a kernel is to use the 
two spike train metrics x and y directly as variables 
without imposing any structure. As before, a general 
kernel can be expressed as k (x, y), here we can define the 
kernel on a pair of their components xi and yj as k(xi, yj). 
The memoryless cross intensity for multichannel spike 
trains can be written as, 
 

   𝑘(x, y) =

𝑘 𝑥!, 𝑦!     𝑘 𝑥!, 𝑦!         ⋯ 𝑘 𝑥!, 𝑦!
𝑘 𝑥!, 𝑦!     𝑘 𝑥!, 𝑦! ⋯ 𝑘 𝑥!, 𝑦!

⋮ ⋱ ⋮
𝑘 𝑥!, 𝑦!     𝑘(𝑥!, 𝑦!) ⋯ 𝑘(𝑥!, 𝑦!)

      ( 2 )  

 
If x = y, we will get a diagonal matrix. 

 
4. Method 

 
It is well known that the firing rate is changed over time in 
neural code experiments. We use inhomogeneous Poisson 
process to simulate spike trains. We also use the coupled 
escape rate model (CERM) [2] to model interactions 
among neurons. It takes many parameters from a realistic 
network model. 

Here we considered a case in which there are two 
neurons a, b with synaptic coupling. The coupled escape 
rate model is defined as follows.  

 

        𝜆! 𝑡 = exp  [  𝑢! +   𝛼!𝑥! 𝑡   +    𝐽!"(𝑡)𝑠!"(𝑡)  ]      (3) 
 

  𝜆! 𝑡 = exp  [  𝑢! +   𝛼!𝑥! 𝑡   +    𝐽!"(𝑡)𝑠!"(𝑡)  ]      (4) 
       

  !!!
!"

=   −    !!
!!
    +    𝛿  (  𝑡 −    𝑡𝑎,𝑘)𝑘               	
 	
 (5)   

     𝑑𝑠𝑎𝑏𝑑𝑡 =   −   
𝑠𝑎𝑏  
τ𝑠
  +    𝛿  (  𝑡−   𝑡𝑏,𝑘)𝑘                   (6) 

λ i(t) is the instantaneous firing rate of neuron i, most 
parameters are indicated in Figure 1. ti ,k is the k-th spike 
time of neuron i, and δ(t) is the Dirac delta function. Both 
the time constants τm and τs were 10 ms. (5) and (6) were 
calculated with a time step of 1 ms. 

  

Figure 1 CERM model parameters: {ua , b ,  aa , b ,  Ja b , b a ,  xa , b(t), 

sa b , b a(t) }. 

5. Evaluation 
 

In this section, we first use the coupled escape rate model 



 

 

to get the simulation spike trains data. We also compare 
the average instantaneous firing rate by changing one of 
parameters in the coupled escape rate model. Specifically, 
The external input to one neuron is changed. Finally, we 
show how a distance could be used to evaluate the 
multichannel mCI in a rigorous manner.  
 
5.1. Simulation data 
 
We used the coupled escape rate model defined in the 
previous section. There are two neurons used in the 
simulation that produce Poisson spike trains with 
time-varying firing rates. 
   Most of the parameters were summarized in Table 1. 
The data had been classified into ten conditions by 
changing u1=[1.4: 0.2: 3.2]. For each condition, 20 trials 
were carried out. The time step is set to 1 ms and each trial 
lasted for 500ms. Our simulation model was run using 
MATLAB. 
 
Table 1 Summary of parameters used in our simulation 
model. 
 
 a1,   a2                     -0.6, -0.9 
 J12,  J21                     -0.5, -0.4 
 u1                          [1.4 : 0.2 : 3.2] 
 u2                          1.7 
 x1(1), x2(1)                  0, 0 
 s12(1), s21(1)                 0, 0 
 
 

  With the same stimuli, the neuron will get different 
respond which one maybe has subtle differences. During 
each condition, we just change the external input to 
neuron 1, and get 200 times spike trains data in total. So 
when u1= 1.4, we can get 20 times spike trains as t=(t1, t2, 
t3, ... , t20), the same to when u1= 1.6, another 20 times 
spike trains as s=(s1, s2, s3, ... , s20) and so on. 
  As the result of the of simulation model, in Figure 1 we 
compute the average firing rate of multichannel spike 
trains.  
 

5.2. Evaluation multichannel mCI 
 
Since we get multichannel spike trains t and s using the 
coupled escape rate model, we should evaluate them by 
changing it to a distance. This is because a distance is 
usually used as a basis for classification, regression and 

other means of analyzing data.  
 

 
Figure 1.  When changing u1=[1.4: 0.2: 3.2], we will get ten 

conditions with each condition carried out for 20 times. We can 

see a subtle difference for each condition by using the average 

firing rate of multichannel spike trains. 
 

The norm distance is a commonly used distance 
obtained from a kernel [5]. The norm distance between 
two spike trains is defined as follows. 

      𝑑 𝑡, 𝑠 = 𝑘 𝑡, 𝑡 − 2𝑘 𝑡, 𝑠 + 𝑘(𝑠, 𝑠)         (7)  

 

 
Figure 2.  We calculate the norm distance for ten times, one is 

for the base condition Dm C I(tu 1 ,tu 1), and others are between the 

base condition and each other condition Dm C I(tu 1 ,tu x), x = 

2,3, .. .  ,10.  

 
  As this experiment has proposed for ten conditions. In 
order to see the obvious difference, we set u1 = 1.4, t=(t1, 
t2, t3, ... , t20), as the base condition to compare to other 
conditions, s=(s1, s2, s3, ... , s20). 
From Figure 2, we can see a result that the distance of Dt,s 



 

 

9 times is larger than the distance of Dt,t. This means that 
with the same u1, the distance between spike trains (ti, t j) 
is small and with the different u1, the distance between 
spike trains (ti, t j) is much smaller than the distance 
between spike trains (ti, sj). 

 
5.3. Comparison with other parameters 
 
Since we get the result by changing the parameter of u1, 
it’s necessary to prove this conclusion in the other way. So 
we do the same experiment with changing the parameter of 
J12 and a1. 
  In the evaluation with a1 =[-0.6: 0.05: -0.15], we used 
their original parameter settings which obtained u1 =1.4. 
The result is showed in Figure 3 and Figure 4. AS there is 
a big change with the average firing rate, the difference of 
the norm distance is large. 

 

 
Figure 3.  When changing a1=[-0.6: 0.05: -0.15], the average 

firing rate of multichannel spike trains. 

 

 

Figure 4.  We consider a1 = -0.6 as the base condition and 

calculate the norm distance for ten times. 

  For the condition of J12 =[-0.5: 0.05: -0.05], we also 
can the same result from Figure 5 and Figure 6. 

 

 
Figure 5.  When changing J1 2=[-0.5: 0.05: -0.05], the average 

firing rate of multichannel spike trains. 

 

 
Figure 6.  We consider J1 2  = -0.5 as the base condition and 

calculate the norm distance for ten times. 

 
6. Conclusion 

 
In order to analyze multichannel spike trains, we proposed 
a new kernel that extends memoryless cross intensity 
kernel. We evaluated it using simulated spike trains 
generated from the coupled escape rate model. The result 

showed that this method is effective at measuring 
multichannel spike trains. 

In future work, we plan to extend this linear 
functional kernel to nonlinear functional kernel to 
evaluate their performance. We also plan to use other 
simulation models. They will make simulated data 
that more similar to the real spike trains.   
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