
DEIM Forum 2014 D9-2

3D Objects Tracking by GPGPU-Enhanced Particle Filter Algorithms
Jieyun ZHOU† Masayuki NUMAO‡ Xiaofeng LI† and Haitao CHEN†

†The School of Communication and Information, University of Electronic Science and Technology of China
No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R.China

‡Graduate School of Informatics and Engineering, University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-0021 Japan

E-mail: †zidongyi@gmail.com, ‡numao@cs.uec.ac.jp

Abstract Objects tracking methods have been wildly used in the field of video surveillance, motion monitoring, robotics
and so on. Particle filter is one of the promising methods, but it is difficult to apply for real time objects tracking because of its
high computation cost. In order to reduce the processing cost without sacrificing the tracking quality, this paper proposes a new
method for real-time 3D objects tracking, using GPGPU-enhanced particle filter algorithms.

Keyword Objects Tracking，Particle filter，3D，GPGPU

1. Introduction
In recent years, visual tracking research is getting

popular among researchers in the fields of video
surveillance, robot vision, etc. A large amount of research
papers focus on the improvement of efficiency and
accuracy of tracking algorithms. In our approach, tracking
problem can be solved by the three basic theories: filtering
theory, similarity function, and partial differential
equation.

The first way is based on the filtering theory. Objects
tracking problem can be converted to the probability
density function estimation problem. In this way we often
use the Kalman filter[1] or particle filter[2] for tracking.
The merits of this method are that we can easily deal with
the occluded objects problem. But the drawbacks of this
method is that computing complexity is very high so it
will take a large amount of calculation time and make
real-time performance difficult. So nowadays a lot of
researchers concentrate on how to decrease the computing
complexity. Second way is based on the Mean-Shift
objects tracking[3]. It is based on the probability
similarity function between the target model and the target
candidate to calculate Mean-shift iteration equation by
gradient descent algorithm. The advantage of it is that the
computing complexity is not very high. But the
shortcoming of this method is that it cannot deal with the
occluded objects problem. The last method is based on
partial differential equation. Changing the target tracking
problem into functional optimization problem, by the
functional extremum from a partial differential equation.

We choose particle filter as our tracking method
because its ability of solving non-linear and non-Gaussian
dynamic system. And it becomes more attractive due to its
high robustness and effectiveness. 3D tracking becomes
popular nowadays due to the effectiveness[4]. The object
itself is a 3D object. But in traditional 2D tracking we
directly take the projection of object. So we lose a lot of
effective information. By 3D objects tracking we can

retrieve these effective information to get high robustness
and effectiveness.

General Purpose Graphics Processing Units (GPGPU)[5]
recently becomes more and more popular due to its high
parallel computing ability and lower cost. Compute
Unified Device Architecture (CUDA)， utilizes the blocks
and the threads of graphics processing units (GPU) to
realize the parallel computing. There are some designs of
particle filter on GPU. But which part of the algorithm can
be migrated into GPGPU and how to parallelize the
algorithm to realize the time reduction is still a challenge.

This paper proposes a development of a robust and
effective system for object tracking. The design is as
follows. First, we use a Kinect to get the 3D information
of objects. Unlike the traditional 2D-based objects
tracking, 3D objects tracking add depth information. It can
track not only from the x and y axis but also from the z
axis, and the depth information can correct some errors
caused by self-adaptive windows in 2D objects tracking.
Second, to solve the high computation cost problem, we
decided to use the GPGPU to parallelize the particle filter
algorithm. We propose a several way to implement particle
filter algorithms on GPU and evaluate the performance by
actually running a program using CUDA. We use GPU in
the following two area, We use the parallel computing
ability of GPU to get a large number of transition particles.
We can also calculate the similarity function and the
weight of each particles from the histogram by each
particles’ region using GPU. We can also use optimizing
parallel reduction in CUDA method to reduce the
computing complexity when calculate the weight of each
particles. From the experiment result this tracking method
can be more real-time and robust.

This paper is organized as follows. Section 2 describes
the background, particle filter and the platform CUDA.
Section 3, the two proposed design techniques are
demonstrated. The experiment result is showed in section
4. And the section 5 draws the conclusion.

2. Background
2.1 Particle filter
Particle filter is a tracking method based on Monte

Carlo sampling. Two kinds of state variables are defined in
this method, state variable and measurement variable. In
hidden Markov model we can’t obverse the state of target
very clearly, and only measurement variable is available.
From the measurement model we can conjecture the state
of state model.

The definition of the state model has been given in [6],
the state sequence },{ Nkxk  of a target given by

),(11  kkkk vxfx (1)

Where kf is the nonlinear system function, kx is the
state vector, kv is the noise of this system. k is the index
of time step. In tracking problem, state model means
actual movement of the target object.

The measurement model can be measured from the
state model

),(kkkk nxhz  (2)

Where kz is the measurement vector, kn is the
measurement noise caused by measure method. kh is the
measurement function. In tracking problem, measurement
model means the estimated movement of target candidate.
The possibility of target candidates are calculated by the
likelihood function.

Fig1 state transition graph
Such a filter consists of two stages: prediction and

update.
● The prediction stage uses the known system

model 1()k kp x x  to predict the state probability density
function (pdf) forward from one measurement time to the
next. 1()k kp x x  defines how the particles moves, it is
a dynamic model.

1
)|()|()|(1:1111:1   kxkkkkkk dzxpxxpzxp (3)

● The update operation uses the latest measurement to
modify the prediction pdf. This is achieved by using Bayes
theorem, which is the mechanism for updating knowledge
about the target state in the light of extra information from
new data.

)|(
)|()|()|(

1:1

1:1
:1




kk

kkkk
kk zzp

zxpxzpzxp (4)

Where the part below is the normalizing constant

kxkkkkkk dzxpxzpzzp)|()|()|(1:11:1   (5)

Where)(kk xzp is the likelihood function. It defines
the similarity of measurement model and state model. The
similarity between target model and target candidate is
also defined by)(kk xzp . So we define the likelihood
function as the weights of particles.

)(kkk xzpw  (6)

So from the equation (3) (4) (6)and the known system
model)(1kk xxp we can easily get the state sequence or
the target model, fig1 shows how the transition works.

The tracking method based on particle filter can be used
as follow.

2.2 GPGPU calculate by Compute Unified
Device Architecture (CUDA)
General-purpose computing on graphics processing

units (GPGPU)[7] which use the graphics processing
units (GPU) to calculate the data for CPU. GPU is usually
used in image processing, but how to migrated it from
CPU to GPU is still a challenge.

CUDA is a parallel computing platform and program
model invented by NVIDIA. It enables a large increase of
computing performance by migrating the data from CPU to
GPU by using parallel computing ability of GPU. A new
execution model has been used is Single instruction
multiple thread (SIMT). SIMT use 32 parallel threads to
create, manage and execute. We call it warp. A warp
executes one common instruction at a time, so full
efficiency is realized when all 32 threads of a warp agree
on their execution path.

Data-parallel processing maps data elements to parallel
processing threads. Many applications that process large
data sets can use a data-parallel programming model to
speed up the computations. In 3D rendering, large sets of

pixels and vectors are mapped to parallel threads.
Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and
decoding, image scaling, stereo vision, and pattern
recognition can map image blocks and pixels to parallel
processing threads. In fact, many non-image-processing
algorithms can be accelerated by data-parallel processing,
from general signal processing or physics simulation to
computational finance or computational biology.

2.3 Kinect for 3D information
Kinect is a motion sensing input device by Microsoft for

the Xbox 360 video game console and Windows PCs[8].
Based around a webcam-style add-on peripheral for the
Xbox 360 console, it enables users to control and interact
with the Xbox 360 without the need to touch a game
controller, through a natural user interface using gestures
and spoken commands.

The device features, RGB camera, Depth sensor (IR),
Multi-array microphone, Motor to adjust camera angle. It
can get three kinds of informations, Color image, Depth
image and Skeleton.

We use a Kinect as a camera for objects tracking. We
use RGB information for normal tracking. Depth
information from Kinect is used to correct the tracking
area.

3. Design method for 3D objects tracking
improvement
Because of the time consuming algorithm, it is a critical

issue for tracking object in a real time. In this section, two
design techniques have been proposed , (A) 3D
self-adaptive tracking window. (B) Parallelization on the
transition part and the likelihood part.

In the following explanations we will use the following
notations,

(1) Tracking window. The target object has been
chosen in the first frame, and the surrounding rectangle is
defined as tracking window. Some of image pixels are
sampled as particles.

(2) Particle. The basic unit of the particle filter
algorithm. It moves in every frame to confirm the location
of the tracking window.

(3) Block. The basic unit in GPU. For parallel
computation.

(4) Thread. The basic unit in GPU. For serial
computation.

3.1 3D self-adaptive tracking window
Traditional particle filter tracking method uses the

random number generator to get random sizes of the
tracking windows[8]. It uses N random numbers to get N
random scales and compute similarity function values. The
window which has the maximum value should be the target
window. This method may have some shortcomings. Even
if the point is in the target window point, the similarity
function value can become very small because the window
size is different. So we need another way to calculate the
correct size of tracking window. We propose a method of

3D self-adaptive tracking window. Scale is used for
describing the changes of tracking window.

If we use the depth information, we can get the correct
value of the tracking window by the first chosen window
and the distance between camera and target. So it doesn't
need N random numbers.

Fig2 Relation between distance and size of window
From the triangle similarity function we can get the

equation of the gray part as below.

1

1
1 1 2 2

2

2

/ 2/ 2

/ 2/ 2

HH
D D

D H D H
HH

D D

   
 


(7)

In equation (7) we can get
1D and 2D from Kinect by

distance sensor, and
1H by the first selected tracking

window. So from equation (7), we can get the size of each
particle. Compared with random window size, the size
calculated by Kinect is much more correct than before.

The difference between the original version and
proposed version is to “get particle” algorithm. It is shown
as below.

3.2 Parallelization in particle filter
If we do every step of algorithm1 in CPU it’s very slow

because it must repeat the same kind of calculation for N
times. If we can do all the calculation in one time it can
reduce the time cost.We will use GPGPU to realize the
parallel computation[9][10]. Fig.3 shows the basic design
on GPU.

Fig3 Block design of proposed particle filter on CUDA

● Initialize N particles (CPU). This part is done in
CPU. We first have to choose a tracking window. And then
produce N pairs of (x, y) random numbers. This random
number set can be moved to GPU and stored in each block.
The present location(x0, y0) is also sent to each block.

● Transport of N particles (GPU). In this step, in each
block that we use random numbers to compute
second-order autoregressive dynamics to sample new
particles, which get a new position of each particle (xp,
yp). In GPU the data is stored in N blocks. Each block is
independent and can calculate parallelly in one time. Then
new particles’ position is sent back from GPU to CPU.

● Histogram calculation (CPU). For each particle’s
position, the distance information is added by Kinect, the
size of the area of each particle is calculated on GPU.
From the area we can get the histogram of each target
candidate. Send N area’s histogram (The length of each
histogram is L) to N blocks and each block exploit L
threads on GPU, each histogram array put in one shared
thread.

● Likelihood calculation (GPU). In each block
likelihood between the histogram of each particle’s area
and the previous target histogram is calculated. Then the
likelihood should be normalized. In order to calculate the
average, we need to add all the blocks value together. In
this situation we can use an optimizing parallel reduction
in CUDA method to optimizing the processing speed.
When the calculation results have been obtained, we take
the weight data from GPU to CPU again to continue the
next calculation.

● Resampling. Processed on CPU to produce more

particles on larger weight area, on the other hand remove
the particles which have small value of weight.

The designed method’s pseudocode is showed as
follows.

● Parallel Reduction. The normalization processing
needs to add a lot of summation of large numbers.
Optimizing parallel reduction is the method how to make
best use of the parallel ability which showed in Fig.4. So
it reduces the calculation time for getting sum from O(N)
to O(log(N)).

Fig4 Way of calculate sum in parallel

4. Experiment Result
The experiment environment is Windows 7 and Visual

Studio 2012 combined with OpenCV 2.3.1, gsl 1.8, and
CUDA 5.5. The camera is Kinect 360. The GPU of this
experiment platform is NVIDA GeForce 9300M Gs 512M
and NVIDA GeForce GTX 480. In this part we compare
the different effects and time cost of original algorithm
and the proposed algorithm in different number of
particles. We can also compare the time cost of each part
of particle filter algorithm.

GPU GPU1 GPU2

Model nVIDA GeForce 9300M nVIDIA GeForce GTX

480

GPU memory 256MB 1536MB

MB 64bit 384bit

Memory Clock 1000MHz 3696MHz

Bus bandwidth 8GB/s 177.4GB/s

Main Clock

frequency

567MHz 700MHz

RAMDAC

frequency

400MHz 400MHz

Table 1 Hardware information for evaluation

(a)

(b)

(c)

(d)
Fig4 Experiment result by Kinect

In Fig4 (a) is the original algorithm of particle filter,
the target is a book. (b) is the new algorithm of 3D
tracking by Kinect, the target is also a book. (c) is the
original algorithm of particle filter, the target is a small
cup. (d) is the new algorithm of 3D tracking by Kinect, the
target is also a small cup. These yellow windows show
each particles’ area, and the red window shows the final
location of the target. The original algorithm sometimes
loses the target and the tracking window does not fit the
target. But the proposed method shows that the target
window is self-adaptive by distance.

Fig5 Time cost result of new algorithm. (a) is simulated by
CPU (b) is simulated by GPU1 (c) is simulated by GPU2

We evaluated the result of the whole time cost in Fig 5.
The experiment result has showed that the proposed
algorithm has a higher real-time ability and robustness.
Then we move to each part. First fig6 shows the transport
part of each particle on two different GPU.

Fig6 Time cost of Transport of N particles (GPU).

Second fig7 shows the likelihood calculating part. We
can see the different performance of these two different
GPU. On GPU2 we also use the Parallel Reduction

method.

Fig7 Time cost of Likelihood calculation (GPU).

5. Conclusion
From the method we mentioned above we propose two

design techniques. (A) 3D self-adaptive tracking window.
(B) Parallelization on the transition part and the likelihood
part. And from the experiment we have done on CUDA the
proposed design can reduce global operation, provide
significant speedup and shows a very good robustness.

Reference

[1] R.E.Kalman A new approach to linear filtering and
prediction problems. Vol.82D,March 1960,pp. 35-45.

[2] M. SanjeevArulampalam, Simon Maskell, Neil
Gordon, and Tim Clapp. A Tutorial on Particle Filters
for Online Nonlinear/Non-Gaussian Bayesian
Tracking of IEEE International Conference on
Acoustics 2002, 723-737

[3] D. Comaniciu and P. Meer, “Mean Shift: A Robust
Approach Toward Feature Space Analysis,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
24, no. 5, pp. 603-619, May 2002.

[4] Iason Oikonomidis ,Efficient Model-based 3D
Tracking of Hand Articulations using Kinect, 2012

[5] Nan Zhang, Yun-shan Chen, Jian-li Wang. Image
parallel processing based on GPU. In International
Conference on Advanced Computer Control(ICACC),
2010. Shenyang:2010.367-371

[6] Min-An Chao, Chun-Yuan Chu, Chih-Hao Chao, and
An-Yeu (Andy) Wu EFFICIENT PARALLELIZED
PARTICLE FILTER DESIGN ON CUDA. IEEE
2010,299-304

[7] NVIDIA CUDA Programming Introduction 2008 6/7
[8] Microsoft Corp. Redmond WA. Kinect for Xbox 360.
[9] Changhyun Choi, Henrik I. Christensen, “RGB-D

Object Tracking: A Particle Filter Approach on
GPU,” in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), 2013.

[10] Iason Oikonomidis ,Efficient Model-based 3D
Tracking of Hand Articulations using Kinect, 2012

[11] Maggio. E, Cavallaro, A. Hybrid Particle Filter and
Mean Shift tracker with adaptive transition model. In
Proceedings of IEEE International Conference on
Acoustics,Speech, and Signal Processing(ICASSP
2005): 221-224

http://www.hichristensen.net/

