

DEIM Forum 2016 C8-1

Distributed Representation-based Recommender Systems in E-commerce
Van-Thuy Phi† Liu Chen‡ and Yu Hirate‡

†Nara Institute of Science and Technology 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
‡Rakuten Institute of Technology 1-14-1 Setagaya-ku, Tokyo, 158-0094 Japan
E-mail: †phi.thuy.ph8@is.naist.jp, ‡{chen.liu, yu.hirate}@rakuten.com

Abstract Recommender system plays an important role in many e-commerce services, such as in Rakuten. In this paper,
we focus on the item-to-item recommender and the user-to-item recommenders, which are two most widely used functions in
online services for presenting relevant items given an item, or a particular user. We use a large amount of log data from one of
Rakuten markets, and apply distributed representation method to that data for developing two types of recommender systems.
The key idea of our approach is treating items as words, and users’ sessions as sentences, then training the Word2vec model
and Doc2vec models based on those items and user’s information. Resulting item vectors from the Word2vec model can be
used to calculate the cosine similarity between items, and find the similar items given an item. Similarly, Doc2vec model helps
users find relevant items that might interest them using similarity between items and vectors. We also use the item vectors from
both embedding models to build an additional user-to-item recommender, namely Item Vector-based system. The experiments
show that our best system achieved a hit-rate of 24.17% for recommending items to users in testing data, which outperformed
conventional approaches to a significant extent.

Keyword Recommender System，Distributed Representation，Item Vector-based

1. Introduction

Recommender system plays an important role in many
e-commerce services, such as Rakuten1. Its goal is to offer
relevant items given an item, or a particular user. If the
system suggests similar items given an item, it provides
item-to-item recommendation. In user-to-item case, this
system helps users to find relevant items that might
interest them. We focus on these two kinds of
recommender systems, because they are commonly used in
real-time services.

Conventional approaches for building recommender
systems are divided into three classes: collaborative
filtering methods, content-based methods, and hybrid
methods. Collaborative filtering (CF) methods help
users/customers to make choices based on the opinions of
other people who share similar interests [2, 7, 8, 9]. They
are considered to be the most popular and widely
implemented techniques in recommendation systems.
Content-based systems recommend items to users by
comparing each item’s attributes with the user profile so
that only items that have a high degree of similarity with
the user profile will be recommended [4, 6]. Hybrid
recommenders are systems that combine multiple
recommendations techniques together.

Recently, Mikolov et al. (2013) have introduced the
skip-gram text modeling architecture [5]. It has been

1 http://global.rakuten.com/corp/worldwide/

shown to efficiently learn meaningful distributed
representations of words or phrases (aka word embedding)
from un-annotated text. In the distributed representation,
similar words are projected into similar vectors. Vectors
from Word2vec model conserve some of the semantic
characteristics in operations regarding the semantic
information that they capture.

Word2vec model is great for capturing meaning of
words or phrases. However, it only learns word
embeddings based on the words’ context. Le and Mikolov
(2014) presented a novel method for generating the
distributed representations of sentences and documents
(aka Doc2vec model, or sentence embeddings) [3].
Doc2vec is an extension of Word2vec that learns to
capture not just individual words but entire sentence and
paragraph. Traditionally, Word2vec and Doc2vec models
are trained on textual corpus data but here we utilize it on
the log data of users. We are therefore treating each item
as a “word” and the “sentences” are the ordered actions
(e.g., viewing history of users). Then the original
Word2Vec method can be applied in the recommendation
scenario.

Based on the distributed representation approach, we
apply it to the users’ behavior data. The details of our
contribution are as follows:

• We train the Word2vec model to assign a vector
for each item, and build the item-to-item
recommender system.

• We apply sentence-embedding technique
(Doc2vec model) to the data, and build the
user-to-item recommender system. Doc2vec
model give us a vector for each item, or user.

• We use the item vectors from both embedding
models to build an additional user-to-item
recommender system, namely Item
Vector-based. We then compare our results with
conventional approaches, e.g., collaborative
filtering methods.

2. Applying Distributed Representation
Approach to Recommender Systems
Based on the idea of utilizing cosine distance to

measure the similarity between items, or users and items,
we apply distributed representation approach to build our
recommender systems. We use the log data from one of
Rakuten markets to generate the item sequences. Each
item sequence is a user ’ session. Therefore, a user may
have several sessions, at different dates and times.

In Word2vec, or Doc2vec model, a document is a
sequence of words with their context. In order to build
recommender systems, we treat users’ sessions as
documents, and items as words in those documents/users’
sessions. Each user has a sequence of item views with
his/her intention. See Figure 1 for our approach.

Figure 1: Distributed representation of users and items

3. Item-to-Item Recommender System
Given an item, the target of an item-to-item recommender

system is to show relevant items to that item. In this
section, we show the results of our item-to-item
recommender system using the Word2vec model. We
called it Word2vec-based system . First, we explain how we
generate the data for training Word2vec model. Then, we
use the trained model to find the similar items given a
particular item.

3.1. Dataset
We collect user log data from one of Rakuten sub markets.

It also offers a huge range of products from various
merchants. The log data is collected from January till
October 2015. It contains click through data, and purchase
history data. Each record in the log data corresponds to a
user ’s action, such as “search” or “view ” or etc. The click
through data is the user ’s behavior ranging from
submitting a search query, to clicking on web pages of
items, or scrolling on those web pages; while the purchase
history is recorded in the transaction logs. By separating
two kinds of data, we can analyze user ’ behavior
effectively and further increase the performance of
recommendation results.

Figure 2 shows some properties of the dataset such as
length of sessions and number of sessions per user. The
left chart is the distribution of sessions’ length. In our
dataset, more than 60% of users’ sessions contain only one
single request (user interacted with only one item). The
chart on the right indicates the distribution of session
count in the dataset. More than 50% of users visited the
site once and did not come back in a long time. These
important statistics help us understand the data, and give
us some hints on how we should generate the users’
sequences, and tune the parameters when training the
embedding model.

Figure 2: Dataset property

From the original data, we generate the item sequences,

and use them to train the Word2vec model. The user ’s
cookie from each record is utilized to identify the unique
user. First, we group records with the same user’s cookie.
Each sequence is a user ’s session. It is a list of items that
the user interacted with. Each session lasts less than 2
hours. It is called the time interval between users’ sessions,
which can reflect user's preference changes over a period
of time. Therefore, a particular user may have multiple
sessions.

Figure 3 illustrates our method for generating the users’

sequences from user log data. We sort the items in each
session by the timestamp that users performed their
actions, and split users' items into sessions to generate the
item sequences. In order to build the item-to-item
recommender system, we use only the order of items in
sessions, and ignore the user information.

Figure 3: Users’ sequences generated from user log data

3.2. Word2vec-based System
Functionally, the item-to-item recommender system

takes an item as input, and outputs a set of similar items
given the input. In order to give the item candidates,
similar items are ranked from highest to lowest score, and
top-n items with the highest scores will be stored as the
output for the item-to-tem recommender system.

We train the Word2vec model using the item sequences
in Section 3.1. Here, each item in sessions corresponds to
a word in sentences. We keep only the meaningful sessions
that have at least N items, and experimentally set N = 3.
To avoid redundancy and reduce the training time, we also
remove consecutive duplicate items in sessions, e.g.,
session "itemA itemB itemB itemA itemC" will be
converted to "itemA itemB itemA itemC".

We use the skip-gram architecture to train the Word2vec
model, and experimentally set the parameter value as
follows:

Parameter Values Explanation
Size 300 Vector dimension

Window 8 Maximum number
words/items of context

Negative 25
 Number of “noise
words/items” should be drawn
(train faster)

Sample 1e-4 Sub-sampling of frequent
words/items

Min-count 3 Items appear less than this
min-count value is ignored

Iteration 20 Training iterations
Table 1: Parameter settings for training Word2vec model

Word2vec model gives us one vector for each item. To

measure the similarity between two items, we calculate the
cosine distance between their item vectors. Here, the
bigger the cosine value is, the more similar the two items
will be. Figure 4 shows an example of our
Word2vec-based item-to-item recommender system’s
result for two kinds of data: click through data, and
purchase history data. The first row is the search query,
while the others are top-5 similar items to the query.

To evaluate the Word2vec-based item-to-item
recommender system, we find top-15 similar items to all
the items that have item vectors from Word2vec model,
and visualize them by putting the items’ images on a 2D
plane. Figure 5 illustrates our visualization for some of the
items.

Figure 4: An example of our item-to-item recommender

system’s results

Figure 5: Visualization of our item-to-item recommender

system’s results, for some items

4. User-to-Item Recommender System
The goal of a user-to-item recommender system is to

suggest relevant items to an individual user based on its

knowledge of the user ’s behavior. That is, given a user,
this recommender shows relevant items to the user. In this
section, we present the results of two user-to-item
recommender systems. The first system is based on the
similarity between all user vectors and item vectors from
Doc2vec model, whereas the latter system infers new item
candidates from user ’s history items, and ranks their
average similarities to the history items set. We also
compare our results with conventional approaches, such as
collaborative filtering methods.

4.1. Dataset
We split the log data into two separated sets: training

and testing data. Training set contains the data from
January to August 2015, while testing set is the data in
September and October 2015. We generate the users’
sequences from the training data. This is similar to Section
3.1. Then, we build the user-to-item recommender systems
from training data, and evaluate our new systems on the
testing set. Note that, we use both the order of items in
sessions, and the user information (their cookies) for
building the user-to-item recommender systems.

4.2. Evaluation Method
Our evaluation metric is similar to the one introduced

by Deshpande and George (2004). The performance is
measured by looking at the number of hits within the
top-N items that were recommended by our user-to-item
recommender system [1]. The number of hits is the
number of items in the testing data that were also present
in the top-N recommended items returned for each user. If
n is the total number of common users in training and
testing data, the hit-rate of the recommendation algorithm
is computed as:

hit-rate (HR) = !"#$%&	()	*+,-
.

In all of experiments we set N = 20 as the number of
items top be recommended by the recommender system. A
hit rate of 1.0 indicates that the system was able to always
recommend the relevant item, whereas 0.0 indicates that
the system was not able to recommend any of the relevant
items.

4.3. Doc2vec-based System
We develop the Doc2vec-based user-to-item

recommender system from the training data in Section 4.1.
Each item in sessions corresponds to a word, and each
user ’s cookie corresponds to a sentence label. In contrast

to the item-to-item recommender system, we keep all the
items and consecutive duplicate items in sessions to
increase the item quantity, and take into account the items
that are viewed/purchased multiple times.

We also use the skip-gram architecture to train the
Doc2vec model, and experimentally tune the parameter
values as in Table 2. The combination of the following
parameters is considered: size, window, negative, sample,
min-count, and iteration. We then perform a grid search to
find the optimal parameters and the best performance for
our user-to-item recommender system.

Parameter Values
Size [50, 100, 200, 300, 400, 500]
Window [1, 3, 5, 8, 10, 15]

Negative [0, 5, 10, 15, 20, 25]

Sample [0, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7,
1e-8]

Min-count [1, 2, 3, ..., 20]
Iteration [10,15, 20, 25, 30]

Table 2: Parameter settings for Doc2vec model
(Bold values are the best settings)

Our Doc2vec-based user-to-item recommender system

achieved a hit-rate of 18.21% for 13,995 users with the
best settings shown in the above table. After that, we tune
each parameter to inspect the best setting for each of them,
and find the important parameters that affect
recommender’s performance. The experiment results are
analyzed in Figure 6.

Figure 6: Parameter optimization for Doc2vec model

All the best settings for parameters result in the best
performance (hit-rate), except min-count. If min-count
value is increased, e.g., min-count=5, the hit-rate will be
higher. However, the item quantity will be significantly
reduced. We therefore, set min-count value to 3 for

keeping the balance between the number of items and the
system’s performance. Figure 6 shows the impact of
parameters Doc2vec model. Interestingly, min-count had
little effect on our recommender system's hit-rate, while
sample and size are two most important parameters that
control the performance.

We compare our results with conventional approaches,
including item-similarity based similarity [10] method and
matrix factorization [11]. The item similarity based model
first computes the similarity between items using the
observations of users who have interacted with both items.
Given a similarity between item i and j, it scores an item j
for user u using a weighted average of the user ’s previous
observations. There are server choices of similarity
function to use, e.g., ‘Jaccard’, ‘cosine’ or ‘pearson’. In
our case, we choose ‘Jaccard’ to compute the item
similarities. Matrix factorization method is another
well-developed method in recommendation scenario. This
model tries to learn latent factors for each user and item
and then uses them to make recommendations.

The first three columns in Figure 8 show the hit-rate of
two collaborative filtering based systems, and our
Doc2vec based system. It indicates that our
Doc2vec-based user-to-item recommender system
performed significantly better than those two
collaborative filtering based recommender systems, with a
hit-rate of 18.21% compared to 3.42%, and 8.02%. Our
new system has proved to be effective by significantly
improving the hit-rate score.

4.4. Item Vector-based System
We also use the item vectors from Word2vec/Doc2vec

model to build an additional user-to-item recommender,
namely Item Vector-based system. Figure 7 provides an
example of our item vector-based system. We develop a
system based on the assumption that each user has a list of
items that he/she interacted with in the training data,
called history items, and each item is represented as an
n-dimension vector from Word2vec/Doc2vec model. Then,
our recommender system will find the similar items given
history items calculate and rank their scores to keep the
most confident items for a particular user. The details of
our approach are described in the following:

• Each user has history items in the log data. They
are used to infer item candidates for
recommendation, which are similar items given
those history items. We get item vectors from
Word2vec/Doc2vec model, choose top-n similar

items, and add them to the candidates set. In our
case, we set n to 20.

• Next, we calculate the score for each pair of user
and item, denoted by SCORE(U, i), where j is an
item in the candidates set. SCORE(U, i) is
computed as:

SCORE(U, i) =
𝑺𝒊𝒎(𝒊,	 	𝒋)	𝒋∈𝑼𝒊𝒕𝒆𝒎𝒔

|𝑼𝒊𝒕𝒆𝒎𝒔|
,

 where i is an item candidate, j is an item in

history items set, and |𝑈=>?@A| is the number of
history items. This score is the average cosine
similarity between each item in the candidates set
and history items.

• Finally, we rank items’ scores, and keep top-N
similar items that have highest scores. We set N
to 20 and use these items as the recommended
items for that user. For example, in figure 7, only
items in the red eclipse will be recommended for
the user.

We leverage the item vectors from pre-trained Word2vec
model in Section 3.2 for calculating items’ scores. Testing
data and test users are the same with the data used to
evaluate our Doc2vec user-to-item recommender system;
therefore we can compare their results in terms of hit-rate
score.

Figure 7: Illustration of item vector-based system

Figure 8 shows the performance of various user-to-item

recommender systems. Our new item vector-based system
achieved of 21.04% when recommending for 13,907 /
13,995 (99.4% user coverage), with the Word2vec’s item
vectors.

Figure 8: Performance of user-to-item recommender

systems

We also use the item vectors from Doc2vec model
instead of Word2vec model. The experiments showed that
our proposed systems achieved a hit-rate of 24.17% for
recommending items to 13,981 / 13,995 users (99.9% user
coverage) in testing data, and outperformed conventional
approaches.

5. Conclusion and Future Work
In this paper, we focused on item-to-item and

user-to-item recommender systems. We developed the
distributed representation-based recommender systems,
and applied that approach to the dataset from one of
Rakuten markets. Experiment results illustrated that our
proposed systems achieved a hit-rate of 24.17% for
recommending items to users in testing data, and
outperformed collaborative filtering methods.

In future work, we plan to evaluate the distributed
representation-based recommender systems based on other
datasets, such as from Rakuten Ichiba, one of the largest
e-commerce site in Japan.

References
[1] Deshpande, Mukund, and George Karypis.

"Item-based top-n recommendation algorithms."
ACM Transactions on Information Systems (TOIS)
22.1 (2004): 143-177.

[2] Konstan, Joseph A., et al. "GroupLens: applying
collaborative filtering to Usenet news."
Communications of the ACM 40.3 (1997): 77-87.

[3] Le, Quoc V., and Tomas Mikolov. "Distributed
representations of sentences and documents." arXiv
preprint arXiv:1405.4053 (2014).

[4] Lops, Pasquale, Marco De Gemmis, and Giovanni
Semeraro. "Content-based recommender systems:
State of the art and trends." Recommender systems
handbook. Springer US, 2011. 73-105.

[5] Mikolov, Tomas, et al. "Distributed representations
of words and phrases and their compositionality."
Advances in neural information processing systems.
2013.

[6] Pazzani, Michael J., and Daniel Billsus.

"Content-based recommendation systems." The
adaptive web. Springer Berlin Heidelberg, 2007.
325-341.

[7] Resnick, Paul, et al. "GroupLens: an open
architecture for collaborative filtering of netnews."
Proceedings of the 1994 ACM conference on
Computer supported cooperative work. ACM, 1994.

[8] Sarwar, Badrul, et al. "Item-based collaborative
filtering recommendation algorithms." Proceedings
of the 10th international conference on World Wide
Web. ACM, 2001.

[9] Schafer, J. Ben, et al. "Collaborative filtering
recommender systems." The adaptive web. Springer
Berlin Heidelberg, 2007. 291-324.

[10] Francesco Ricci, Lior Rokach, and Bracha
Shapira. Introduction to recommender systems
handbook. Springer US, 2011.

[11] Koren, Yehuda, Robert Bell and Chris
Volinsky. “Matrix Factorization Techniques for
Recommender Systems.”Computer Volume: 42,
Issue: 8 (2009): 30-37.

