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Abstract   Recommender system plays an important role in many e-commerce services, such as in Rakuten. In this paper, 
we focus on the item-to-item recommender and the user-to-item recommenders, which are two most widely used functions in 
online services for presenting relevant items given an item, or a particular user. We use a large amount of log data from one of 
Rakuten markets, and apply distributed representation method to that data for developing two types of recommender systems. 
The key idea of our approach is treating items as words, and users’ sessions as sentences, then training the Word2vec model 
and Doc2vec models based on those items and user’s information. Resulting item vectors from the Word2vec model can be 
used to calculate the cosine similarity between items, and find the similar items given an item. Similarly, Doc2vec model helps 
users find relevant items that might interest them using similarity between items and vectors. We also use the item vectors from 
both embedding models to build an additional user-to-item recommender, namely Item Vector-based system. The experiments 
show that our best system achieved a hit-rate of 24.17% for recommending items to users in testing data, which outperformed 
conventional approaches to a significant extent. 
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1. Introduction 

Recommender system plays an important role in many 
e-commerce services, such as Rakuten1. Its goal is to offer 
relevant items given an item, or a particular user.  If the 
system suggests similar items given an item, it provides 
item-to-item  recommendation. In user-to-item  case, this 
system helps users to find relevant items that might 
interest them. We focus on these two kinds of 
recommender systems, because they are commonly used in 
real-time services. 

Conventional approaches for building recommender 
systems are divided into three classes: collaborative 
filtering methods, content-based methods, and hybrid 
methods. Collaborative filtering (CF) methods help 
users/customers to make choices based on the opinions of 
other people who share similar interests [2, 7, 8, 9]. They 
are considered to be the most popular and widely 
implemented techniques in recommendation systems. 
Content-based systems recommend items to users by 
comparing each item’s attributes with the user profile so 
that only items that have a high degree of similarity with 
the user profile will be recommended [4, 6]. Hybrid 
recommenders are systems that combine multiple 
recommendations techniques together. 

Recently, Mikolov et al. (2013) have introduced the 
skip-gram text modeling architecture [5]. It has been 

                                                                    
1 http://global.rakuten.com/corp/worldwide/ 

shown to efficiently learn meaningful distributed 
representations of words or phrases (aka word embedding) 
from un-annotated text. In the distributed representation, 
similar words are projected into similar vectors. Vectors 
from Word2vec model conserve some of the semantic 
characteristics in operations regarding the semantic 
information that they capture.  

Word2vec model is great for capturing meaning of 
words or phrases. However, it only learns word 
embeddings based on the words’ context. Le and Mikolov 
(2014) presented a novel method for generating the 
distributed representations of sentences and documents 
(aka Doc2vec model, or sentence embeddings) [3]. 
Doc2vec is an extension of Word2vec that learns to 
capture not just individual words but entire sentence and 
paragraph. Traditionally, Word2vec and Doc2vec models 
are trained on textual corpus data but here we utilize it on 
the log data of users. We are therefore treating each item 
as a “word” and the “sentences” are the ordered actions 
(e.g., viewing history of users). Then the original 
Word2Vec method can be applied in the recommendation 
scenario.  

Based on the distributed representation approach, we 
apply it to the users’ behavior data. The details of our 
contribution are as follows: 

• We train the Word2vec model to assign a vector 
for each item, and build the item-to-item 
recommender system. 



 

 

• We apply sentence-embedding technique 
(Doc2vec model) to the data, and build the 
user-to-item recommender system. Doc2vec 
model give us a vector for each item, or user. 

• We use the item vectors from both embedding 
models to build an additional user-to-item 
recommender system, namely Item 
Vector-based. We then compare our results with 
conventional approaches, e.g., collaborative 
filtering methods. 

 

2. Applying Distributed Representation 
Approach to Recommender Systems 
Based on the idea of utilizing cosine distance to 

measure the similarity between items, or users and items, 
we apply distributed representation approach to build our 
recommender systems. We use the log data from one of 
Rakuten markets to generate the item sequences. Each 
item sequence is a user ’ session. Therefore, a user may 
have several sessions, at different dates and times. 

In Word2vec, or Doc2vec model, a document is a 
sequence of words with their context. In order to build 
recommender systems, we treat users’ sessions as 
documents, and items as words in those documents/users’ 
sessions. Each user has a sequence of item views with 
his/her intention. See Figure 1 for our approach. 

 
Figure 1: Distributed representation of users and items 
 

3. Item-to-Item Recommender System 
Given an item, the target of an item-to-item recommender 

system is to show relevant items to that item. In this 
section, we show the results of our item-to-item 
recommender system using the Word2vec model. We 
called it Word2vec-based system . First, we explain how we 
generate the data for training Word2vec model. Then, we 
use the trained model to find the similar items given a 
particular item. 

 

3.1. Dataset 
We collect user log data from one of Rakuten sub markets. 

It also offers a huge range of products from various 
merchants. The log data is collected from January till 
October 2015. It contains click through data, and purchase 
history data. Each record in the log data corresponds to a 
user ’s action, such as “search” or “view ” or etc. The click 
through data is the user ’s behavior ranging from 
submitting a search query, to clicking on web pages of 
items, or scrolling on those web pages; while the purchase 
history is recorded in the transaction logs. By separating 
two kinds of data, we can analyze user ’ behavior 
effectively and further increase the performance of 
recommendation results. 

Figure 2 shows some properties of the dataset such as 
length of sessions and number of sessions per user. The 
left chart is the distribution of sessions’ length. In our 
dataset, more than 60% of users’ sessions contain only one 
single request (user interacted with only one item). The 
chart on the right indicates the distribution of session 
count in the dataset. More than 50% of users visited the 
site once and did not come back in a long time. These 
important statistics help us understand the data, and give 
us some hints on how we should generate the users’ 
sequences, and tune the parameters when training the 
embedding model. 

 
Figure 2: Dataset property 

 
From the original data, we generate the item sequences, 

and use them to train the Word2vec model. The user ’s 
cookie from each record is utilized to identify the unique 
user. First, we group records with the same user’s cookie. 
Each sequence is a user ’s session. It is a list of items that 
the user interacted with. Each session lasts less than 2 
hours. It is called the time interval between users’ sessions, 
which can reflect user's preference changes over a period 
of time. Therefore, a particular user may have multiple 
sessions. 

Figure 3 illustrates our method for generating the users’ 



 

 

sequences from user log data. We sort the items in each 
session by the timestamp that users performed their 
actions, and split users' items into sessions to generate the 
item sequences. In order to build the item-to-item 
recommender system, we use only the order of items in 
sessions, and ignore the user information. 

 
Figure 3: Users’ sequences generated from user log data 

 

3.2. Word2vec-based System 
Functionally, the item-to-item recommender system 

takes an item as input, and outputs a set of similar items 
given the input. In order to give the item candidates, 
similar items are ranked from highest to lowest score, and 
top-n items with the highest scores will be stored as the 
output for the item-to-tem recommender system. 

We train the Word2vec model using the item sequences 
in Section 3.1. Here, each item in sessions corresponds to 
a word in sentences. We keep only the meaningful sessions 
that have at least N items, and experimentally set N = 3. 
To avoid redundancy and reduce the training time, we also 
remove consecutive duplicate items in sessions, e.g., 
session "itemA itemB itemB itemA itemC" will be 
converted to "itemA itemB itemA itemC". 

We use the skip-gram architecture to train the Word2vec 
model, and experimentally set the parameter value as 
follows: 

Parameter Values Explanation 
Size 300  Vector dimension 

Window 8  Maximum number 
words/items of context 

Negative 25 
 Number of “noise 
words/items” should be drawn 
(train faster) 

Sample 1e-4  Sub-sampling of frequent 
words/items 

Min-count 3  Items appear less than this 
min-count value is ignored 

Iteration 20  Training iterations 
Table 1: Parameter settings for training Word2vec model 

 
Word2vec model gives us one vector for each item. To 

measure the similarity between two items, we calculate the 
cosine distance between their item vectors. Here, the 
bigger the cosine value is, the more similar the two items 
will be. Figure 4 shows an example of our 
Word2vec-based item-to-item recommender system’s 
result for two kinds of data: click through data, and 
purchase history data. The first row is the search query, 
while the others are top-5 similar items to the query. 

To evaluate the Word2vec-based item-to-item 
recommender system, we find top-15 similar items to all 
the items that have item vectors from Word2vec model, 
and visualize them by putting the items’ images on a 2D 
plane. Figure 5 illustrates our visualization for some of the 
items.  

 
Figure 4: An example of our item-to-item recommender 

system’s results 
 

 
Figure 5: Visualization of our item-to-item recommender 

system’s results, for some items 
 

4. User-to-Item Recommender System 
The goal of a user-to-item recommender system is to 

suggest relevant items to an individual user based on its 



 

 

knowledge of the user ’s behavior. That is, given a user, 
this recommender shows relevant items to the user. In this 
section, we present the results of two user-to-item 
recommender systems. The first system is based on the 
similarity between all user vectors and item vectors from 
Doc2vec model, whereas the latter system infers new item 
candidates from user ’s history items, and ranks their 
average similarities to the history items set. We also 
compare our results with conventional approaches, such as 
collaborative filtering methods. 

 

4.1. Dataset 
We split the log data into two separated sets: training 

and testing data. Training set contains the data from 
January to August 2015, while testing set is the data in 
September and October 2015. We generate the users’ 
sequences from the training data. This is similar to Section 
3.1. Then, we build the user-to-item recommender systems 
from training data, and evaluate our new systems on the 
testing set. Note that, we use both the order of items in 
sessions, and the user information (their cookies) for 
building the user-to-item recommender systems. 

 

4.2. Evaluation Method 
Our evaluation metric is similar to the one introduced 

by Deshpande and George (2004). The performance is 
measured by looking at the number of hits within the 
top-N items that were recommended by our user-to-item 
recommender system [1]. The number of hits is the 
number of items in the testing data that were also present 
in the top-N recommended items returned for each user. If 
n is the total number of common users in training and 
testing data, the hit-rate of the recommendation algorithm 
is computed as: 

hit-rate (HR) = !"#$%&	()	*+,-
.

 

In all of experiments we set N = 20 as the number of 
items top be recommended by the recommender system. A 
hit rate of 1.0 indicates that the system was able to always 
recommend the relevant item, whereas 0.0 indicates that 
the system was not able to recommend any of the relevant 
items. 
 

4.3. Doc2vec-based System 
We develop the Doc2vec-based user-to-item 

recommender system from the training data in Section 4.1. 
Each item in sessions corresponds to a word, and each 
user ’s cookie corresponds to a sentence label. In contrast 

to the item-to-item recommender system, we keep all the 
items and consecutive duplicate items in sessions to 
increase the item quantity, and take into account the items 
that are viewed/purchased multiple times. 

We also use the skip-gram architecture to train the 
Doc2vec model, and experimentally tune the parameter 
values as in Table 2. The combination of the following 
parameters is considered: size, window, negative, sample, 
min-count, and iteration. We then perform a grid search to 
find the optimal parameters and the best performance for 
our user-to-item recommender system. 

Parameter Values 
Size  [50, 100, 200, 300, 400, 500] 
Window  [1, 3, 5, 8, 10, 15] 

Negative  [0, 5, 10, 15, 20, 25] 

Sample  [0, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 
1e-8] 

Min-count  [1, 2, 3, ..., 20] 
Iteration  [10,15, 20, 25, 30] 

Table 2: Parameter settings for Doc2vec model 
(Bold values are the best settings) 

 
Our Doc2vec-based user-to-item recommender system 

achieved a hit-rate of 18.21% for 13,995 users with the 
best settings shown in the above table. After that, we tune 
each parameter to inspect the best setting for each of them, 
and find the important parameters that affect 
recommender’s performance. The experiment results are 
analyzed in Figure 6. 

 

Figure 6: Parameter optimization for Doc2vec model 
 

All the best settings for parameters result in the best 
performance (hit-rate), except min-count. If min-count 
value is increased, e.g., min-count=5, the hit-rate will be 
higher. However, the item quantity will be significantly 
reduced. We therefore, set min-count value to 3 for 



 

 

keeping the balance between the number of items and the 
system’s performance. Figure 6 shows the impact of 
parameters Doc2vec model. Interestingly, min-count had 
little effect on our recommender system's hit-rate, while 
sample and size are two most important parameters that 
control the performance. 

We compare our results with conventional approaches, 
including item-similarity based similarity [10] method and 
matrix factorization [11]. The item similarity based model 
first computes the similarity between items using the 
observations of users who have interacted with both items. 
Given a similarity between item i and j, it scores an item  j 
for user u using a weighted average of the user ’s previous 
observations. There are server choices of similarity 
function to use, e.g., ‘Jaccard’, ‘cosine’ or ‘pearson’. In 
our case, we choose ‘Jaccard’ to compute the item 
similarities. Matrix factorization method is another 
well-developed method in recommendation scenario. This 
model tries to learn latent factors for each user and item 
and then uses them to make recommendations.  

The first three columns in Figure 8 show the hit-rate of 
two collaborative filtering based systems, and our 
Doc2vec based system. It indicates that our 
Doc2vec-based user-to-item recommender system 
performed significantly better than those two 
collaborative filtering based recommender systems, with a 
hit-rate of 18.21% compared to 3.42%, and 8.02%. Our 
new system has proved to be effective by significantly 
improving the hit-rate score. 
 

4.4. Item Vector-based System 
We also use the item vectors from Word2vec/Doc2vec 

model to build an additional user-to-item recommender, 
namely Item Vector-based system. Figure 7 provides an 
example of our item vector-based system. We develop a 
system based on the assumption that each user has a list of 
items that he/she interacted with in the training data, 
called history items, and each item is represented as an 
n-dimension vector from Word2vec/Doc2vec model. Then, 
our recommender system will find the similar items given 
history items calculate and rank their scores to keep the 
most confident items for a particular user. The details of 
our approach are described in the following: 

• Each user has history items in the log data. They 
are used to infer item candidates for 
recommendation, which are similar items given 
those history items. We get item vectors from 
Word2vec/Doc2vec model, choose top-n similar 

items, and add them to the candidates set. In our 
case, we set n to 20. 

• Next, we calculate the score for each pair of user 
and item, denoted by SCORE(U, i), where j is an 
item in the candidates set. SCORE(U, i) is 
computed as: 

SCORE(U, i) = 
𝑺𝒊𝒎(𝒊,	 	𝒋)	𝒋∈𝑼𝒊𝒕𝒆𝒎𝒔

|𝑼𝒊𝒕𝒆𝒎𝒔|
, 

  where i is an item candidate, j is an item in 

history items set, and |𝑈=>?@A| is the number of 
history items. This score is the average cosine 
similarity between each item in the candidates set 
and history items. 

• Finally, we rank items’ scores, and keep top-N 
similar items that have highest scores. We set N 
to 20 and use these items as the recommended 
items for that user. For example, in figure 7, only 
items in the red eclipse will be recommended for 
the user. 

We leverage the item vectors from pre-trained Word2vec 
model in Section 3.2 for calculating items’ scores. Testing 
data and test users are the same with the data used to 
evaluate our Doc2vec user-to-item recommender system; 
therefore we can compare their results in terms of hit-rate 
score. 

 
Figure 7: Illustration of item vector-based system 

 
Figure 8 shows the performance of various user-to-item 

recommender systems. Our new item vector-based system 
achieved of 21.04% when recommending for 13,907 / 
13,995 (99.4% user coverage), with the Word2vec’s item 
vectors. 



 

 

 
Figure 8: Performance of user-to-item recommender 

systems 
 

We also use the item vectors from Doc2vec model 
instead of Word2vec model. The experiments showed that 
our proposed systems achieved a hit-rate of 24.17% for 
recommending items to 13,981 / 13,995 users (99.9% user 
coverage) in testing data, and outperformed conventional 
approaches. 

 

5. Conclusion and Future Work 
In this paper, we focused on item-to-item and 

user-to-item recommender systems. We developed the 
distributed representation-based recommender systems, 
and applied that approach to the dataset from one of 
Rakuten markets. Experiment results illustrated that our 
proposed systems achieved a hit-rate of 24.17% for 
recommending items to users in testing data, and 
outperformed collaborative filtering methods. 

In future work, we plan to evaluate the distributed 
representation-based recommender systems based on other 
datasets, such as from Rakuten Ichiba, one of the largest 
e-commerce site in Japan.  
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