
DEIM Forum 2016 C4-6

Query Suggestion for Helping Struggling Search

Zebang CHEN†, Takehiro YAMAMOTO†, and Katsumi TANAKA†

† Graduate School of Informatics, Kyoto University
36-1 Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501 Japan
E-mail: †{chenzb,tyamamot,tanaka}@dl.kuis.kyoto-u.ac.jp

Abstract Search engine users often struggle to find the relevant information for their information need by reformulating

their queries many times. Since many queries during struggling search are failed and sparse, the existing query suggestion

methods often fail to generate effective query suggestions for struggling search. In this paper, we propose a method to gen-

erate effective query suggestions aiming to help struggling search. The core is identifying struggling component of on-going

struggling session and mining the effective representations of it. The struggling component is the semantic unit of informa-

tion need for which the user struggled to find an effective representation during the struggling session. The proposed method

first identifies the struggling component of given on-going struggling session and mines the sessions containing the identified

struggling component from a query log to build a struggling flow graph. The struggling flow graph records the struggling

reformulation behaviors of multiple users for the given struggling component. The experimental results demonstrate that the

proposed method outperforms the existing algorithm in terms of MRR@10 and nDCG@10.

Key words query suggestion, information retrieval, struggling search

1. Introduction

Search engines have been widely used to find information and

solutions to problems. However, many users often struggle to lo-

cate relevant information to their problem [1]. This search process

is referred to as struggling search. In struggling search, the user

struggles to reformulate query many times for the information. For

example, Table 1(a) shows a struggling session in which a user at-

tempted to find information about what sports came from Australia.

Unfortunately, although the user attempted to reformulate his/her

query many times, he/she could not locate the required information

and gave up. Hassan et al. reported that, among long search ses-

sions, 36% are struggling sessions and many users fail to locate the

required information [1]. Therefore, it is important for search en-

gines to help users in struggling search effectively.

Query suggestion is an effective way to help a user formulate

query. Many query suggestion methods have been proposed and

proven very useful. However, existing query suggestion methods

have limitations when addressing struggling search. One problem

is that most queries in struggling sessions are failed queries with

few clicks, which means that existing methods that rely on query

terms and clicked documents are likely to generate ineffective sug-

gestions and may lead to another failed trial. Another problem is

that the information needs of many struggling sessions are long-

tail information need, which means that no user or few users have

searched for these information previously, thus, there are no effec-

tive related queries in the query log.

In this paper, we propose a query suggestion method aiming to

help struggling search. The core idea of our method is identi-

Table 1: Examples of struggling sessions (terms in italics are the

struggling phrase of the query)

Query

Sport Australia history <failed>

Sport of Australia <failed>

Sport from Australia <failed>

Sport came from Australia <failed>

(a)

Query

the donut came from where <failed>

history of the donut <failed>

origin of donut <successful>

(b)

fying the struggling component of an on-going struggling session

and mining effective representations of the struggling component

to generate query suggestions. The struggling component is a se-

mantic component of the information need in which a user needs to

struggle to find its effective representation (See Section 3). For ex-

ample, there are three semantic components in the information need

of the session shown in Table 1(a): sport, came from, and Australia.

Among these components, user struggled to find effective represen-

tations for came from. The same struggling component may occur

in search sessions for different information needs. As shown in Ta-

ble 1(b), another user attempted to find out where did donut come

from. This user also struggled to find an effective representation

for came from, similar to the user in Table 1(a). However, this user

finally obtained an effective representation for the struggling com-

ponent: origin, which can also enable the user in Table 1(a) to locate

relevant information using query: ”sport origin Australia”.

Given an on-going struggling session, we first identify its strug-

gling component and retrieve all sessions with the same struggling

component from a query log. We then build a struggling flow graph

by aggregating the struggling reformulation behaviors in the re-

trieved sesions. Further we can mine effective representations of

the struggling component to generate effective query suggestions

for the on-going struggling session.

The contributions of this paper can be summarized as follows.
• We propose a query suggestion method to help struggling

search. To the best of our knowledge, this is the first query

suggestion algorithm designed to help struggling search.
• We introduce the concept and a method to identify the strug-

gling component of a struggling session, which enables us to

understand which part that a user is struggling at.
• We introduce the struggling flow graph, which is a graph that

records multiple users’ struggling reformulation behaviors for

the same struggling component.

The remainder of this paper is organized as follows. In Section

2, we explain related work including query suggestion, struggling

search, and long-tailed search. In Section 3, we introduce and de-

fine the key concepts used in this paper. In Sections 4 and 5, we

describe how we identify the struggling component and generate

effective query suggestions, respectively. In Section 6, we explain

our experiment and analyze the results. The paper is concluded in

Section 7.

2. Related Work

Query Suggestion. One main approach to query suggestion is min-

ing click-through data. Beeferman and Berger [2] built a bipartite

graph based on click-through data and clustered queries with the

same clicked documents because they are likely to have the same

search intent. Baeza-Yates et al. [3] clustered queries based on their

term-weight vector calculated from queries as well as their clicked

documents. The queries in the same cluster are ranked and con-

sidered possible query suggestions. Mei et al. [4] ranked queries

using the hitting time on the bipartite graph to ensure semantic con-

sistency between the original query and query suggestions. Cao et

al. [5] summarized queries and mapped sessions to concepts based

on click-through data to build a concept sequence suffix tree, which

is used to obtain the context of the current search in order to generate

context-aware query suggestions. Another main approach to query

suggestion is mining query reformulations of search sessions. Boldi

et al. [6] used the query flow graph [7] to generate query sugges-

tions. Each node in a query flow graph represents a query and each

edge between two nodes means that they are consecutive in at least

one session. The short random walk is then applied to the graph

to generate query suggestions. Jones et al. [8] proposed a model to

generate a set of query substitutions by replacing the whole query

or parts of the query with related phrases.

Struggling Search. Struggling search was first formally introduced

by Hassan et al. [1]. They analyzed the characteristics of struggling

session and proposed a model to distinguish struggling sessions and

exploratory sessions [9]. Task difficulty is a main factor that leads

to struggling search. Carmel et al. [10] investigated what makes a

query difficult, by capturing and analyzing the relationships among

the main components of a topic: the textual expression (the query

or queries), the set of documents relevant to the topic, and the entire

collection of documents. Aula et al. [11] studied behavioral signals

when a user has difficulty with a search task. They found that, when

finding relevant information is difficult, users attempt to formulate

more diverse queries, use advanced operators more frequently, and

spend more time on viewing search results pages. Liu et al. [12]

explored the effect of task difficulty on search behavior for users

with different levels of domain knowledge. Although many stud-

ies have been done on understanding task difficulty and how users

behave when experiencing difficulty, few studies have attempted to

find ways to assist struggling search. Liu et al. [13] used a learning-

to-rank approach to rank query suggestions generated using a pre-

viously proposed method [5] for difficult search, that depends on

effective click-through data. Odijk et al. [14] studied the charac-

teristics of search tasks where users struggle and proposed ways to

predict future actions and their anticipated impact on search out-

comes.

Long-tail Search. Yao et al. [15] conducted an empirical study

of user behavior with rare queries using a large-scale query log

and proved significant differences among many features, including

query length and search results. To generate query suggestions for

long-tail queries, Bonchi et al. [16] [17] built a center-piece sub-

graph containing term nodes and query nodes with two types of

connections: term-query and query-query connections. A random

walker starts with the terms in a given query to generate query sug-

gestions even if the query has not occurred previously. To extend the

reach of query suggestion for long-tail queries, Szpektor et al. [18]

introduced a query template and an enhanced query flow graph [7]

with query templates, through which suggestions are available even

for the long-tail queries that do not have succeeding query.

3. Preliminaries

In this section, we first explain the conceptes of query log, ses-

sion, and struggling session used in this paper. We then introduce

the key concepts for modeling struggling search in order to clarify

our approach to generating query suggestions.

Query log: A query log is a log that records user search queries

and document clicks with their timestamps. A typical format for

a record in a query log is <user id, query, clicked document,

timestamp>. In this paper, we use the AOL query log, which con-

tains the search behaviors of approximately 650,000 users over 3

months, as our primary dataset. Note that the proposed method is

not specific to the AOL query log, but is applicable to other query

logs.

Session: A session represents a topically coherent session during

which a user’s information need does not change. One well-known

way to extract sessions from a query log is to use a predefined time

threshold, e.g., 30 min of inactivity [19], which may contain search

queries and document clicks for different information needs in the

same session [20]. To ensure that sessions are topically coherent,

we used the settings in [1] with a small adjustment: two consecu-

tive queries are topically coherent if they are no longer than 10 min

apart and they must share at least one non-stopword term. In the rest

parts of this paper, we simply use session to represent a topically-

coherent session.

Struggling session: A struggling session is a session in which a

user experiences difficulty locating information that is relevant to

their information need. Typical user search behaviors in a strug-

gling session are reformulating query many times and spending sig-

nificant time on the search process [1]. Several examples are shown

in Table 1.

Here, we introduce key concepts for modeling struggling search.

Information need: An information need is the need to locate infor-

mation in order to satisfy a user’s requirement. Example informa-

tion needs are as follows: what sports came from Australia, where

did donut come from, and gas mileage of 2000 4runner.

Component: A component is a semantic unit that corresponds to

things in the real world, such as concepts, objects, actions, and rela-

tions. In this work, we model that an information need comprises a

set of components. For example, the information need what sports

came from Australia comprises three components, sport, came from,

and Australia, and the information need gas mileage of 2000 4run-

ner comprises gas mileage and 2000 4runner.

Each component has a set of representations, which are used by

users to describe the component in their queries. For example, to

describe the component 2000 4runner, users may use 2000 4runner,

4runner, toyota 4runner, toyota 2000 4runner, etc. More examples

are shown in Table 2.

During a session, users choose a representation for each compo-

nent of their information need based on their own knowledge and

experience to formulate a query, which means that each term in

the query is an input that describes the corresponding component

of their information need. If the returned results do not satisfy the

information need, users may reformulate the query by changing,

adding/or removing term(s) in order to locate relevant information,

as shown in Table 3.

Struggling component: In a struggling session, we define a strug-

gling component as a component for which user has difficulty to find

an effective representation. For example, for the session shown in

Table 1(a), the information need of the session is what sports came

from Australia, which has three components, sport, came from, and

Australia. During the session, the user frequently reformulated the

representation of the came from component, which may mean that

the user had difficulty finding an effective representation of this

component. Thus, came from is the struggling component in this

session.

Struggling phrase: Given a query in a struggling session, the strug-

gling phrase of the query is defined as the set of terms in the query

that represent the struggling component of the session. Note that the

struggling phrase of a query may be empty. Table 1 shows exam-

ples of struggling phrases in a struggling session. For example, the

struggling phrases of the four queries in Table 1(a) are {history},

{of}, {from}, and {came, from}.

Table 2: Example components.

Component Representations

gas mileage gas mileage, mpg, fuel mileage, miles per gallon,

kilometer per liter, etc.

come from of, from, come from, originate from, history, etc.

amount how many, number, count, amount, statistics, etc.

Table 3: Example struggling session for information need where

does donut come from, with components: donut, came from. Terms

between () are input for representing donut, terms between [] are

input for representing came from.

Query Division based on components

the donut came from where (the donut) [came from where]

history of the donut [history of] (the donut)

origin of donut [origin of] (donut)

Figure 1: Example of struggling phrase classifier.

4. Identifying Struggling Phrase

In this section, we explain how we identify the struggling phrases

of a struggling session.

4. 1 Problem statement
Given a struggling session with a sequence of queries, our objec-

tive is to distinguish the struggling phrase in each query. To this end,

we take a machine learning approach and build a struggling phrase

classifier. Specifically, for each term in a query of a struggling ses-

sion, we classify it into one of two classes, struggling phrase (SP)

and non-struggling phrase (NSP), as shown in Figure 1.

4. 2 Features
To build the struggling phrase classifier, we designed features for

identifying struggling phrases in a struggling session, as shown in

Table 4. There are two types of features, i.e., term-level features and

session-level features.
• Term-level features: These features describe the characteris-

tics of a term. A term with many alternatives has higher prob-

ability to be classified as a struggling phrase because a user

may struggle to find an effective representation from these al-

ternatives. For example, a term that refers to an entity typically

has fewer alternatives. In addition, the part-of-speech of a term

may indicate whether it has many (or few) alternatives to a cer-

tain degree.
• Session-level features: These features describe the relation-

ships of a term and the session. A term that the user gives up

on quickly has high probability of being classified as a strug-

gling phrase, and a term that the user keeps in all queries in

Table 4: Struggling phrase classifier features
Name Description

Term level features
isEntity whether the term refers to an entity

POS part-of-speech of the term

Session level features
occurenceRatio ratio of queries in which the term occurred

in the session

firstOccurence order number of the query in which the term

first occurred

Figure 2: Precision of struggling phrase classifier.

the session has high probability of being classified as a non-

struggling phrase.

4. 3 Experimental setup
Data. We manually extracted 146 struggling sessions from the AOL

query log, which resulted in 540 queries. For each query, we manu-

ally labeled terms as a struggling phrase or a non-struggling phrase

by checking the query, the search results, and the context of the ses-

sion, assuming we were the searcher with an information need es-

timated by the search behavior. We trained the classifier with these

labeled data to distinguish struggling phrases and non-struggling

phrases of a query for a struggling session.

Baseline. For the baseline, we used the frequency-based method to

identify the struggling phrase of a query. This method classifies a

term as a non-struggling phrase only when all queries in the session

contain the term; otherwise, the term is was classified as a strug-

gling phrase.

Setting. We used the support vector machine with a linear kernel to

train the classifier. 10-fold cross-validation was used for this exper-

iment. Note that the performance of the proposed method depends

on the number of queries in a session. To investigate the effect of

the number of queries available for the classifier on classification

performance, we experimented with several cases by changing the

number of queries in a session (e.g., the first query, the first two

queries, the first three queries . . ., all queries).

4. 4 Experimental results
Figure 2 shows the precision of the classification obtained by the

proposed method and the frequency-based method. The x-axis is

the number of queries used by each method to classify a term.

Table 5: Example struggling sessions.

Query

2007 lincoln mkz mileage <failed>

2007 lincoln mkz fuel <failed>

2007 mkz fuel per mile <failed>

lincoln mkz mpg <successful>

(a)

Query

Honda civic fuel efficiency <failed>

Honda civic mileage <failed>

Honda civic gas mileage <successful>

(b)

As can be seem, the classifier outperformed the frequency-based

method in terms of precision. The precision of the classifier in-

creased with an increased number of queries. The precision reached

0.76 when the proposed method used all queries in a session. In

contrast, the precision of the frequency-based method did not im-

prove with an increased number of queries. One reason for this is

that a user slightly modified the terms of non-struggling phrase later

in the session.

5. Generating Effective Query Suggestion

In this section, we first explain how we extract sessions that have

the same struggling component as the on-going struggling session.

We then introduce the struggling flow graph, how to build the graph,

and mine effective representations for the struggling component in

order to generate effective query suggestions.

5. 1 Mining sessions with the same struggling component
As introduced in Section 3, the struggling component is a compo-

nent of an information need for which user experiences difficulty to

find an effective representation of the component. The same strug-

gling component may occur in sessions with different information

needs. We have hypothesized that sessions with the same struggling

component have similar struggling phrases, and share the same ef-

fective representations for the struggling component. Two examples

have been shown in Table 1(a) and Table 1(b), in which the first user

searched for what sport came from Australia and the second user

searched for where does donut came from, wherein both struggled

to represent the struggling component came from effectively. Fur-

ther examples are shown in Table 5(a) and Table 5(b), where the

first user searched for the gas mileage of 2007 lincoln mkz and the

second user searched for the gas mileage of Honda civic, and both

struggled to represent the struggling component gas mileage effec-

tively.

Figure 3 illustrates how we mine sessions with the same strug-

gling component from the query log. Given an on-going struggling

session, we hope to obtain all sessions with the same struggling

component as the given session from the query log. Specifically,

given an on-going struggling session, we first identify its struggling

phrases and retrieve the struggling sessions with the same struggling

phrases in their queries from the query log. Then, we again extract

the struggling phrases of each retrieved session to obtain more ses-

sions with same struggling phrases in a breadth-first-search manner.

5. 2 Struggling flow graph
Having obtained sessions with possibly the same struggling com-

Figure 3: Mining sessions with the same struggling component from

query log.

Figure 4: Example of struggling flow graph.

ponent, we then build a struggling flow graph to find the effec-

tive representation of the struggling component. The purpose of

the struggling flow graph is to aggregate multiple users’ reformu-

lation behaviors for the terms of a struggling component and mine

the effective representations for the given struggling component. A

struggling flow graph extendsthe query flow graph [6]. In the strug-

gling flow graph, each node represents a struggling phrase of the

struggling component. In addition, an edge in the struggling flow

graph means that two struggling phrases are consecutive in at least

one struggling session.

Here, s0 denote an on-going struggling session for which we

want to provide query suggestions, S = {s1, . . . , sn} denote the

set of sessions mined by the method described in Section 5. 1 , and

V = {v1, . . . , vm} denote the unique set of struggling phrases ob-

tained from S by using the classifier described in Section 4.

Formally, the struggling flow graph for sessions S is represented

as weighted directed graph GS = (V,E, ω).
• V is the set of nodes in the graph. Each node corresponds to a

struggling phrase.
• E ⊂

= V × V is the set of directed edges. If there is at least one

session where two struggling phrases vi and vj appear consec-

utively in S, there is a directed edge from vi to vj . In addition,

for every vi ∈ V there is a self-transitive edge from vi to vi.
• ω : E → (0..1] is a weighting function that assigns a weight

ω(vi, vj) to each pair of struggling phrases (vi, vj) ∈ E.

5. 3 Finding effective representation using struggling flow
graph

Here, we describe how we find the effective representation of

the struggling component using the Struggling flow graph. As ex-

plained previously, the struggling flow graph is an extension of the

query flow graph. In the query flow graph, each node represents a

query q and the weight of an edge between two queries qi and qj

is determined by the probability that the user who issued query qi

and reformulate it as query qj in a topically coherent session. To

generate query suggestions for a given query(ies) q, a random walk

is applied to the query flow graph with the random walker starting

with query(ies) q. We can extract query suggestions according to

the value of the stationary distribution of each query.

We follow the idea of the query flow graph, except for the follow-

ing differences.
• The struggling flow graph represents a struggling phrase as a

node.
• The struggling flow graph incorporates information about

whether a query appears to be successful or a failure into the

graph.

For the former point, differing from the query flow graph, which

aggregates all sessions in the query log into a single graph, the

struggling flow graph aggregates only the reformulation behaviors

of terms rather than queries. This allows us to understand the term-

level reformulation behaviors of users, which may address the prob-

lem of long-tailed queries.

For the latter point, the failure rate in struggling search is high,

which increases the probability of failed query suggestions by the

random walk in the graph. To address this problem, we incorporate

information about whether a query appears successful or a failure

into the graph. Suppose we can predict the effectiveness of each

struggling phrase in the graph. Our idea is to add high self-transition

probability to the effective struggling phrases. Since a node with

high self-transition probability is likely to obtain a high random

walk score in the stationary distribution, we expect that adding a

high self-transition probability to effective struggling phrases will

allow us to find effective struggling phrases for the struggling com-

ponent by applying a random walk to the graph.

5. 4 Preparing transition probabilities
In this subsection, we describe how we compute the transition

probabilities among the nodes in the struggling flow graph. The

assumption behind mining effective struggling phrases is that if

one struggling phrase is effective, most users who input it will

stop searching as it is effective in helping the users find relevant

pages with the information they require. Similarly, if one struggling

phrase is ineffective, most users who input it will continue searching

as it fails to help the users find the relevant pages. The actual tran-

sition probabilities are computed based on the following method.

Here, e(vi) represents the number of sessions that end with strug-

gling phrase vi with effective clicks and N(vi, vj) represents the

number of sessions where vi and vj occur consecutively. The flow

information of struggling phrases that occur only a few times are

not trustworthy because they are biased due to sparsity. We define

the degree of trustworthiness of a struggling phrase to evaluate how

trustworthy the flow information of the struggling phrase is, which

is represented as td(vi). As a struggling phrase occurs more times,

the degree of trustworthiness of it increases.

td(vi) =


e(vi)∑

vj∈V N(vj ,si)
, if e(si) < threshold

1.0, if e(vi) >= threshold
.

The self-transition probability of a node is set as follows.

ω(vi, vi) = td(vi)
e(vi)∑

vk∈V N(vj , vi)
.

For the rejected self-transition probability due to low trustable de-

gree, we averagely distribute them to all struggling phrases in the

struggling flow graph as random jump probability rj(vi).

rj(vi) = (1− td(vi))
e(vi)∑

vj∈V N(vj , vi)
.

The weight between different struggling phrases vi and vj (i |= j)

is as follows:

ω(vi, vj) = (1− ω(vi, vi)− rj(vi))
r(vi, vj)∑

vj∈V r(vi, vk)
+

rj(vi)

|V | .

Note that the weights calculated based on above weighting func-

tions w(·) are already normalized such that their values represent

the transition probability among nodes. In addition, note that, the

struggling flow graph uses uniform random jump rather than biased

random jump, as is the case of the query flow graph, because our

struggling flow graph consists of only related sessions, i.e., sessions

with the same struggling component.

5. 5 Generating query suggestions
Here, we describe the overall method to generate query sug-

gestions for a given on-going session. Given an on-going session

s0 = {q1, . . . , qn}, where n represents the number of queries in the

session, we first identify the struggling phrases of the session using

the method described in Section 4. We then mine the set of sessions

S using the method described in Section 5. 1 and build the strug-

gling flow graph GS . Then, we apply a random walk to the graph

and extract the top k nodes according to their random walk values in

stationary distribution. Finally, we generate the query suggestions

by replacing the struggling phrases of the last query in the on-going

sessions with the top k struggling phrases.

6. Experiment

In this section, we introduce an experiment conducted to evaluate

the effectiveness of the query suggestions generated by the proposed

method.

6. 1 Baseline
For the baseline, we used the query flow graph proposed by Boldi

et al. [7]. The query flow graph is a directed graph that aggregates

a query log and has been proven very useful for query suggestions

and user behavior analysis. Here, we refer to the baseline method as

query flow graph method and the proposed method with the strug-

gling flow graph method.

6. 2 Evaluated sessions
To evaluate the effectiveness of the proposed method with diverse

struggling sessions, we first manually prepared eight types of strug-

gling components by scanning the struggling sessions sampled from

Table 6: Examples sessions.

Strugglig component Example session

gas mileage of car
q1: 2001 mustang fuel per mile

q2: 2001 mustang fuel efficiency

q3: 2001 mustang gasoline miles

origin of something
q1: where does the name bonnaroo come from

q2: bonnaroo hisotry

q3: bonnaroo history

best of something
q1: top 25 children hospital

q2: top 25 children’s hospital

q3: number one children’s hospital

the AOL query log. For each struggling component, we manually

extracted as many struggling sessions with the struggling compo-

nent as possible from the AOL query log. Finally, for each strug-

gling component, we randomly sampled 10 struggling sessions from

the extracted sessions and used them in the experiment(80 sessions

in total). Table 6 shows examples of struggling components and

their corresponding session.

6. 3 Ground truth
We defined a query suggestion that enables a user to locate rele-

vant pages as an effective suggestion. To create ground truth query

data, for each session described in the previous subsection, we first

simulated the session user and attempted to understand the user’s

search intent as best as possible. For each of the top 10 query sug-

gestions generated by a method, we issued the suggestion to a com-

mercial search engine and examined whether there were relevant

pages for the user’s information need in the first page of the search

results. If there was at least one relevant document in the search

results page, the suggestion was considered effective; otherwise the

suggestion was considered ineffective.

6. 4 Evaluation metrics
The following metrics were employed to measure the perfor-

mance of query suggestions.
• Support rate: The ratio of sessions for which at least one

query suggestion could be offered.
• Effective support rate@10: The ratio of sessions in which

one or more effective query suggestions were offered in the top

10 query suggestions.
• MRR@10: Mean reciprocal rank (MRR) of the top 10 query

suggestions.
• nDCG@10: Normalized discounted cumulative gain (nDCG)

of the top 10 query suggestions. Here, we used binary rele-

vance for the evaluation. An effective query suggestion had

relevance of 1, while an ineffective query suggestion had rele-

vance of 0.

6. 5 Setting
We used all the prepared labeled struggling sessions prepared

(Section 4.2) to train the struggling phrase classifier, which was used

to detect struggling phrases of a session. In addition, as with the ex-

periment explained in Section 4. 3, we experimented with several

cases by changing the number of available queries in a session.

Figure 5: Mean support rate

Figure 6: Mean effective support rate@10

Figure 7: MRR@10

Figure 8: Mean nDCG@10

6. 6 Results
Figure 5 shows the mean support rate obtained by the baseline

method and the proposed method. As can be seen, the performance

to generate query suggestions for struggling sessions improved as

the number of available queries increased for both the query flow

graph and the struggling flow graph. However, the query flow graph

could not generate any query suggestion for 69% of the struggling

Table 7: Example struggling sessions

Query

q1: average mileage for ford mustang

q2: 99 mustang mileage

(a)

Query

q1: history of baseball

q2: country and origin of baseball

(b)

Table 8: Query suggestions for struggling session in Table 7(a).

Suggestions

Not available.

(a) Suggestion by baseline.

Suggestions

1st: 99 mustang gas mileage

2nd: 99 mustang mileage rate

3rd: 99 mustang fuel mileage

4th: 99 mustang distance

5th: 99 mustang mileage deduction

(b) Suggestion by proposed method.

sessions even when it could use all queries in the session. This

was primarily because information needs for many struggling ses-

sions are long-tailed; thus, the queries in struggling search are also

long-tailed queries, which may never occur in the query log. On the

other hand, the struggling flow graph could generate query sugges-

tions for significantly more sessions than the query flow graph. This

shows that considering struggling phrases in a session rather than

the queries themselves allows us to address the problem of long-

tailed queries. Figures 6, 7, and 8 summarize the mean effective

support rate@10, MRR@10 and mean nDCG@10, respectively.

From Figure 6, we can observe that the effective support rate@10 is

much lower than the support rate for both the query flow graph and

the struggling flow graph, which means that only a portion of the

sessions were provided effective query suggestions among the ses-

sions for which the given method could provide query suggestions.

Similar to the support rate, the struggling flow graph outperformed

the query flow graph significantly relative to generating effective

query suggestions. The struggling flow graph generated effective

query suggestions for 35% of the sessions, and the query flow graph

generated effective query suggestions for only 7.5% of the sessions,

even when it used all queries of the sessions. From Figures 7 and 8,

we can see that the ranking performance increased with an increas-

ing number of available queries for both the query flow graph and

the struggling flow graph. The struggling flow graph also outper-

formed the query flow graph in terms of the ranking performance of

effective query suggestions. When using all queries in the session,

the proposed method achieved MRR@10 of 0.113 and nDCG@10

of 0.166, and the baseline method achieved MRR@10 of 0.043 and

nDCG@10 of 0.058.

Two detailed examples of struggling sessions used in the experi-

ment are shown in Table 7(a) and Table 7(b). For the struggling ses-

sion shown in Table 7(a), the user struggled to find the gas mileage

of ford 99 mastang. The query suggestions generated by query flow

graph are shown in Table 8(a), and those generated by the struggling

flow graph are shown in Table 8(b). As can be seen, no query sug-

gestion was generated by the query flow graph because the queries

Table 9: Query suggestions for struggling session in Table 7(b).

Suggestions

1st: history of futball

2nd: history of lacrosse

3rd: baseball history

4th: history of American futball

5th: history of baseball and steroids

(a) Suggestion by baseline.

Suggestions

1st: baseball history

2nd: baseball origin

3rd: baseball origin game

4th: baseball mean

5th: baseball begin

(b) Suggestion by proposed method.

in the session shown in Table 7(a) never occurred in the query log

because the information need of the session was a long-tailed infor-

mation need. For the struggling flow graph method, we first distin-

guish the struggling component of the session and then mine the ef-

fective struggling phrases to generate query suggestions, that maybe

effective for the user’s information need.

Another example struggling session is shown in Table 7(b), where

the user struggled to find information about the origin of baseball.

The query suggestions generated by the query flow graph are shown

in Table 9(a), and the query suggestions generated by the struggling

flow graph are shown in Table 9(b). Several query suggestions were

generated by the query flow graph; however, none were effective

because they were either failed queries for the same information

need or a query for another information need. As noted previously,

most queries in a struggling session are failed queries and the query

flow graph aggregates all information from a query log and does

not guarantee consistency of the information need. The struggling

flow graph method only retrieved sessions that with potentially the

same struggling component, which guarantees consistency to some

degree and helps to generate several query suggestions that may sat-

isfy the user’s information need.

7. Conclusion

In this paper, we proposed a query suggestion method to help

struggling search based on identifying the struggling component

of a struggling session and mine effective representations using a

struggling flow graph. We conducted an experiment to investigate

the effectiveness of the proposed method compared to a baseline.

The experimental results show that the proposed method outper-

formed the baseline method in terms of support rate, effective sup-

port rate@10, MRR@10, and nDCG@10. In the future, we plan

to improve the model for identifying the struggling phrase and ex-

amine methods to improve the prediction of the user’s information

need.

Acknowledgement This work was supported in part by KAK-

ENHI (#15H01718).

References
[1] Ahmed Hassan, Ryen W White, Susan T Dumais, and Yi-Min Wang.

Struggling or exploring?: disambiguating long search sessions. In
WSDM’14, pages 53–62, 2014.

[2] Doug Beeferman and Adam Berger. Agglomerative clustering of a
search engine query log. In KDD’00, pages 407–416, 2000.

[3] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Query

recommendation using query logs in search engines. In Current
Trends in Database Technology-EDBT 2004 Workshops, pages 588–
596, 2005.

[4] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query sugges-
tion using hitting time. In CIKM’08, pages 469–478, 2008.

[5] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong
Chen, and Hang Li. Context-aware query suggestion by mining click-
through and session data. In KDD’08, pages 875–883, 2008.

[6] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, and
Sebastiano Vigna. Query suggestions using query-flow graphs. In
Workshop on Web Search Click Data, pages 56–63, 2009.

[7] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato,
Aristides Gionis, and Sebastiano Vigna. The query-flow graph:
model and applications. In CIKM’08, pages 609–618, 2008.

[8] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Gen-
erating query substitutions. In WWW’06, pages 387–396, 2006.

[9] Gary Marchionini. Exploratory search: from finding to understand-
ing. Communications of the ACM, 49(4):41–46, 2006.

[10] David Carmel, Elad Yom-Tov, Adam Darlow, and Dan Pelleg. What
makes a query difficult? In SIGIR’06, pages 390–397, 2006.

[11] Anne Aula, Rehan M Khan, and Zhiwei Guan. How does search be-
havior change as search becomes more difficult? In CHI’10, pages
35–44, 2010.

[12] Chang Liu, Jingjing Liu, Michael Cole, Nicholas J Belkin, and Xi-
angmin Zhang. Task difficulty and domain knowledge effects on in-
formation search behaviors. In ASIST’12, 49(1):1–10, 2012.

[13] Yang Liu, Ruihua Song, Yu Chen, Jian-Yun Nie, and Ji-Rong Wen.
Adaptive query suggestion for difficult queries. In SIGIR’12, pages
15–24, 2012.

[14] Daan Odijk, Ryen W. White, Ahmed Hassan Awadallah, and Su-
san T. Dumais. Struggling and success in web search. In Proceedings
of the 24th ACM International on Conference on Information and
Knowledge Management, CIKM ’15, pages 1551–1560, New York,
NY, USA, 2015. ACM.

[15] Ting Yao, Min Zhang, Yiqun Liu, Shaoping Ma, and Liyun Ru. Em-
pirical study on rare query characteristics. In WI’11, pages 7–14,
2011.

[16] Francesco Bonchi, Raffaele Perego, Fabrizio Silvestri, Hossein Va-
habi, and Rossano Venturini. Recommendations for the long tail by
term-query graph. In WWW’11, pages 15–16, 2011.

[17] Francesco Bonchi, Raffaele Perego, Fabrizio Silvestri, Hossein Va-
habi, and Rossano Venturini. Efficient query recommendations in
the long tail via center-piece subgraphs. In SIGIR’12, pages 345–
354, 2012.

[18] Idan Szpektor, Aristides Gionis, and Yoelle Maarek. Improving rec-
ommendation for long-tail queries via templates. In WWW’11, pages
47–56, 2011.

[19] Ryen W White and Susan T Dumais. Characterizing and predicting
search engine switching behavior. In CIKM’09, pages 87–96, 2009.

[20] Rosie Jones and Kristina Lisa Klinkner. Beyond the session timeout:
automatic hierarchical segmentation of search topics in query logs.
In CIKM’08, pages 699–708, 2008.

