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Abstract In the concept of Sensor-Cloud, many sensor networks are unified and provide Sensing as a Service to

users. The users can utilize provisioning virtual sensors to perform desired tasks. The expense (cost) is based on

the amount and types of data requests. In this paper, unlike other existing works, we propose a cost-minimizing

framework for dynamic skyline monitoring. Our approach avoids paying the cost of all attributes by iteratively

requesting the most cost-effective attributes that can identify whether a tuple is in dynamic skyline. We conduct

some experiments on various real datasets. The results confirm the effectiveness compared with the baseline and

the random strategy.
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1. Introduction

Wireless Sensor Networks (WSNs) play an important role

in various fields including environmental monitoring, struc-

ture health monitoring, disaster prevention, industrial mon-

itoring and so forth. These have been extensively researched

in the research community. Because of the development of

mobile phones and social networks, the concept of mobile

sensing – using sensors on mobile phones as a sensing plat-

form has been introduced. Therefore, a massive amount

of information has been generated everyday, which enables

many captivating applications. However, most of real sen-

sor networks are deployed and utilized for only a specific

purpose on limited locations by private organizations. Ac-

cording to individually-invested expensive installation cost,

those resources are rarely federated and not often open to

public. Moreover, in mobile sensing, mobile phone users are

not willing to do sensing tasks due to privacy concerns and

mobile battery constraints.

Dealing with Big Sensor Data, the idea of using cloud

computing (Sensor-Cloud) aims to unify available sensors

together, i.e., various existing WSNs and mobile users, and

many research challenges to create such a platform have been

addressed [1].

Sensing as a service (S2aaS) [8] in Sensor-Cloud abstracts

all the physical layers of sensor network integration. It pro-

vides the cloud users to effectively utilize the provisioning

virtual sensors, so cloud users can perform their desire sens-

ing tasks by using various kinds of sensors in an available

wide-spread area without technical difficulties. In commer-

cial services [4], cloud users pay the usage cost based on the

amount of utilization (pay as you go) without the necessity

of deploying their own infrastructure, while WSNs providers

(owner) and mobile phone users may receive the rewards in

the forms of rental fee or the cost of requested data.

Meanwhile, primitive tasks of WSNs are monitoring. Due

to various types of sensors integrated in Sensor-Cloud, many

monitoring systems take more than one attribute into ac-

count from various kinds of provided sensors to make a deci-

sion (Multiple-criteria decision-making). Hence, many com-

plex monitoring queries for multidimensional data have been

developed including top-k query, k-nearest neighbor query,

skyline query and reverse skyline query. Based on the invest-

ment and production cost, different types of sensors provide

different kind of data at different prices in Sensor-Cloud.

Even though, the traditional monitoring methods can be

used on Sensor-Cloud, none of previous works has addressed

the important objective for cloud users when using Sensor-

Cloud, i.e., cost minimization.

In this work, we firstly propose a cost-minimization moni-

toring framework for dynamic skyline queries, a useful query

method for WSNs, where a traditional skyline is a special

case. Given a reference point (query point) in normal situ-

ation and a data set of critical points, the system monitors

periodically-sensed data from sensors (event tuple). To il-

lustrate, an administrator monitors a combination of risk

factors of flash flood, e.g., ground water level, precipitation,

high tide and melting snow on a location every 30 minutes.
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Figure 1: The example of dynamic skyline of q1

The standard levels of these factors are used as a reference

point. If their values are close to the reference point, it shows

a benign event takes place. Otherwise, if the values deviate

from the reference point until they are worse than (domi-

nated by) the given critical points, i.e., become a dynamic

skyline, the administrator must look at such an event with at-

tention. However, knowing actual values of some attributes

may lead to a conclusion. For example, the readings now

shows that ground water level and precipitation are very low

and close to the standard levels, so, regardless of other fac-

tors, there is no chance of flood. In this case, we can save

utilization cost by not requesting sensor data for such negli-

gible factors.

Our proposed framework evaluates cost-effective measure-

ment for each attribute to decide a plan, which sensor should

be requested in order to lead to the query answer with

the lowest cost. We conduct some experiments using real

datasets to ensure the capability and scalability of our pro-

posed framework.

2. Related Work

Sensor-Cloud is a new concept which is inherited from

Cloud computing. Cloud computing basically provides users

many XaaS (X as a service) such as Platform as a Service

(PaaS). Sensor-Cloud aims to integrate and abstract many

physical sensors and/or any communicating things as an in-

frastructure that allows users to easily utilize it with lower

cost than owning WSNs. This is called Sensing as a Service

(S2aaS) [8], and some services can become commercial [4].

The comprehensive survey of architecture, advantages and

provisioning applications are covered up in [1].

To draw a conclusive decision from multi-dimensional data,

e.g, sensor data, many complex query processing techniques

have been developed. Among these, skyline processing plays

an important role in various applications such as monitoring

and service discovery [9]. Most works address efficient sky-

line processing [7] and distributed skyline processing [3]. In

this work, we firstly investigate a cost minimization problem

for dynamic skyline [6], which is a superclass of traditional

skyline, in Sensor-Cloud.

3. Cost Minimizing Framework

3. 1 Problem Statement

Given a set ofm attributes including AT = {att1, att2, . . . ,
attm}, and let D = {d1, d2, . . . , dND} be a dataset of criti-

cal points in m-dimensional positive Euclidean space of at-

tributesA = A1×A2×. . .×Am. di ∈ D can be represented as

a point (di1, d
i
2, ..., d

i
m) ∈ A where dij ∈ Aj , i ∈ {1, 2, ..., ND}

and j ∈ {1, 2, . . . ,m}.

Definition 1. (Dynamic Skyline Query) [2], [6]: Given an

m-dimensional query point q ∈ A and a dataset D, a Dy-

namic Skyline Query (DSQ) w.r.t. q retrieves all data

points in D that are not dynamically dominated denoted by

DSQ(D, q). A point d ∈ D dynamically dominates d′ ∈ D

w.r.t. the query point q if (1) ∀i ∈ {1, 2, ...,m} : |qi − di| <=
|qi−d′i|, and at least one j ∈ {1, 2, ...,m} : |qj−dj | < |qj−d′j |.

DSQ can be computed by using the traditional sky-

line computation（注1） by transforming all points di =

(di1, d
i
2, ..., d

i
m) to the new data space w.r.t. point q, i.e.,

d′i = (|di1 − q1|, |di2 − q2|, ..., |dim − qm|). However, the query

points registered in the system can be more than 1 point,

e.g., many reference points. Let Q = {q1, q2, ..., q|Q|} be a

set of monitoring dynamic skyline query points. In this case,

Dynamic Skyline Query of Q is defined by DSQ(D,Q) =∪
q∈Q DSQ(D, q). In Fig.1a, DSQ(D, q1) = {d1, d4, d5} be-

cause the traditional skyline on the new space consists of

d′1, d4 and d′5.

An event tuple e is a group of values read from different

types of sensors associated with meta-data, e.g., a times-

tamp and a location. We assume that to acquire each at-

tribute value costs differently, so cloud providers use a fixed

price vector C =
⟨
c1, c2, . . . , cm

⟩
as a price per reading of

attribute att1, att2, . . . , attm respectively.

Definition 2. (Dynamic Skyline Monitoring Query): Given

a set of query points Q ⊂ A and a dataset D, Dynamic

Skyline Monitoring Query (DSMQ) according to Q identifies

whether an m-dimensional event tuple e = (e1, e2, ..., em) be-

long to a dynamic skyline w.r.t. at least one query q ∈ Q.

DSMQ(D,Q, e) =

true ; e ∈ DSQ(D ∪ {e}, Q)

false ; Otherwise

In Fig.1b, event tuple e1 is dynamically dominated by

d4 while e2 is not dynamically dominated by any point, so

DSMQ(D, {q1}, e1) returns false and DSMQ(D, {q1}, e2)
returns true.

（注1）：The definition of traditional skyline is referred to [2], [3], [7]



To periodically fetch all attributes for monitoring applica-

tions, the cost is fixed at
∑m

i=1 c
i at each timestamp. In this

paper, we object to execute monitoring DSMQ by minimiz-

ing the total expense for Sensor-Cloud services. We observe

that, many monitoring applications only focus on unusual

events (returning false in DSMQ) in real-time while the oth-

ers (possibly a majority) are neglected not even to be stored

into the disk. Note that if users prefer to access historical

data to analyze in details, they may pay additional fees to

access those data directly from the cloud.

3. 2 Sequential Attribute Request Strategy

Instead of getting all attribute values, it is more economi-

cal to sequentially get only a set of partial attributes that is

still able to lead to the same decision making. However, that

optimal set is unknown in prior. Our proposed framework

presents the strategy to sequentially request some promising

attributes that are still able to answer DSMQ.

Here, we give the definition of anti-dominance range of

attribute atti.

Definition 3. (Anti-dominance range of attribute atti w.r.t

q denoted by ADq(atti)): Given a dataset D and a query

point q, ADq(atti) is an interval [a, b] ∈ [0, Ai] which is ex-

pressed by:

ADq(atti) = [max(0, qi − g),min(Ai, qi + g)] (1)

where g = mins∈q.DSQ |si − qi|

Lemma 1. For any ei ∈ ADq(atti) regardless of other at-

tribute values then e ∈ DSQ(D ∪ {e}, q)

Proof. Omitted.

The examples of ADq1(att1) and ADq1(att2) (the pur-

ple intervals) are shown in Fig.1b. Note that because e21 ∈
ADq1(att1) regardless of e

2
2 then DSMQ(D,Q, e2) = true.

However, at the beginning, we have to decide which at-

tribute to be retrieved first. The greedy choice is to re-

trieve the attribute which is most likely able to draw the

conclusion right after the request. Therefore, assuming that

all attributes are independent and identically distributed

random variables (iid), we can calculate the probability of

DSMQ(D,Q, e) = true (Dynamic skyline probability) after

having requested atti (ei) by the following equation.

PD,Q(atti) =
len(

∪
q∈Q ADq(atti))

Ai
(2)

where len() is a sum of lengths of union intervals.

In the case that after having fetched the first attribute and

DSMQ(D,Q, e) cannot be concluded, we have to choose the

next promising attribute to be requested from the remaining

unrequested attributes. Given the already-fetched attribute
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Figure 2: An example of anti-dominance range

set F , then ei : atti ∈ F is known, the anti-dominance range

and skyline probability of atti ∈ AT\F are possibly changed

as the following equations.

ADq(atti|F ) = [max(0, qi − g′),min(Ai, qi + g′)] (3)

where g′ = mins∈q.DSQ\{s′∈q.DSQ|∀j∈F :|qj−sj |>ej} |si − qi|.
In Fig.2a using the same dataset as Fig.1b, assume that

e2 has been fetched, the range ADq1(att1|{e2}) is expanded

from ADq1(att1) as shown in the figure.

PD,Q(atti|F ) =
len(

∪
q∈Q ADq(atti|F ))

Ai
(4)

Lemma 2. If F ′⊂
=F , then PD,Q(atti|F ′) <= PD,Q(atti|F )

Proof. Omitted.

Nevertheless, the important factor is cost. Our proposed

framework selects a promising attribute to fetch based on

the following cost-efficient measurement.

atti = argmax
atti∈AT\F

[
PD,Q(atti|F )

ci

]
(5)

Running Example : We illustrate by using Fig.2b. Given a

price vector is ⟨3, 2⟩, we calculate the probability as follows:

PD,Q(att1) = 1.4/3 = 0.467 and PD,Q(att2) = 1.0/2 = 0.5.

Hence, The first attribute to select is att2.

Algorithm 1 summarizes the procedures of our proposed

framework. We assume that DSQ(D, q) for q ∈ Q can be

pre-computed once.

3. 2. 1 Time Complexity Analysis

Finding ADq(atti|F ) requires calculating g′ for each q and

each attribute. This takes O(m · |Q| · |S|) time where |S|
is the cardinality of the dynamic skyline. For indepen-

dent dimensions, the expected number of skyline points is

θ((logn)d/(d−1)!) [2]. In line 4, len(
∪

q∈Q ADq(atti|F )) can

be found by sorting intervals and computing their sum with

O(|Q| log |Q|) time. In line 8, checking the membership is

processed on an interval tree in O(log |Q|) time. For each tu-

ple, in the worst case, these procedures need to be repeated
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Algorithm 1: The proposed framework

Data: a dataset D, a query set Q, an event tuple e, a price

vector c

Result: DSMQ(D,Q, e), cost

1 F ← ∅
2 while F |= Q do

3 Calculate
∪

q∈Q ADq(atti|F )

4 Calculate PD,Q(atti|F ) for all atti ∈ AT\F
5 Request ei where

atti = argmaxatti∈AT\F PD,Q(atti|F )/ci

6 cost← cost+ ci

7 F ← F ∪ {atti}
8 if ei ∈

∪
q∈Q ADq(atti) then

9 return (true, cost)

10 return (false, cost)

at most m times resulting in O(m2 · |Q| · |S|+m · |Q| log |Q|)
in total.

4. Experiments and Discussion

We empirically evaluate our proposed framework’s effi-

ciency. All algorithms were implemented in C# and per-

formed in a commodity PC (8GB, Core i7 3.6GHz). Since

none of existing studies addressed this problem before, we

compared our framework with (i) Baseline – fetching all at-

tributes (ii) Random – choosing next attribute randomly by

replacing lines 4-5, Algorithm 1. We used various dimen-

sional real data sets including STOCK (2d) (from NYSE),

NBA (4d), HOUSEHOLD (6d) and COLOR (9d) used in

[5], [10]. We sampled 1000 points from each data set as a

dataset D (ND = 1000). The set of query points (Q) was

drawn from independent data distribution varying between

1-100 points. The actual event tuples are also sampled from

its corresponding dataset. Price vectors specified in each

dataset were randomly generated with a random integer price

between 1-9. As a result, ⟨4, 8⟩ , ⟨7, 1, 9, 2⟩ , ⟨1, 9, 3, 4, 2, 4⟩
and ⟨2, 2, 5, 4, 5, 8, 4, 8, 6⟩ were used as price vectors for 2d,

4d, 6d and 9d datasets respectively. Finally we measured

the total cost of payment (10000 event tuples) as well as the

total number of data requests as performance metrics.

In Fig.3, we show the total cost on different datasets and

on various sizes of Q. The results indicat that the total cost

incurred by our proposed framework (MinCost) is lower than

the random scheme (Random) and the baseline (Baseline).

The reduction ratio is getting higher on high |Q| and high

dimensionality (m) because the higher |Q|, the higher chance
that an event tuple belongs to the dynamic skyline of one of

the queries. In the same way, in high dimensionality, the

size of dynamic skyline of each query (|DSQ(D, qi)|) is sup-
posed to increase exponentially. In low dimensionality i.e.,

2d-STOCK, MinCost did not beat the other methods signif-

icantly (saving only 2.54% compared to the baseline when

|Q| = 100). Nevertheless, the total cost can be saved up to

22.04%, 75.98% and 86.9% in 4d, 6d and 9d datasets respec-

tively.

In Fig.4, we show the number of data requests on each

setting. For the baseline, if we assume that we request all



attribute values once (parallel request), the number of re-

quests is constant at 10000 (Baseline (Parallel)). Meanwhile,

assuming sequential requests, we need to request 10000 · m
times (Baseline (Sequential)). The results also showed that

the number of requests of MinCost is lower than the random

scheme and the baseline in most cases especially on high di-

mensional datasets and high |Q|. However, it does not mean

that requesting fewer attributes results in lower cost. To

illustrate, in 4d-NBA dataset and |Q| ∈ [10, 100], MinCost

requested more attribute values than the random scheme,

but MinCost consumes lower cost because MinCost makes a

retrieval plan based on both skyline probability and cost of

each attribute.

In our framework, finding ADqi(atti|F ) for each qi and atti

is the highest intensive computation. However, in our exper-

iments even in 9d, |Q| = 100, this process takes only 42ms

in the worst case for single event tuple, while less compli-

cated cases and other process take less than 1ms. Therefore,

our proposed framework does not burden high latency, and

applicable to most real-time applications.

5. Conclusion and Future work

We have introduced the problem of dynamic skyline mon-

itoring on Sensor-Cloud and proposed a novel approach to

save the compensation for it. Our approach iteratively re-

quests and assesses the most promising attribute first by

measuring our proposed cost-effective attribute measure-

ment. Hence some tuples can be identified as dynamic sky-

line without fetching all attributes. The experiments per-

formed on various real datasets ensure that this strategy can

significantly cut the cost compared to the baseline and out-

perform the random strategy. In addition, the processing

cost is quite small even in high dimensionality and many

query points.

As a part of our future work, we aim to investigate the

same problem on other types of queries and the feasibility to

employ learning models for adaptively fitting to an irregular

data distribution.
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