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Abstract By development of the Internet and spread of Internet devices among people, several activity and

communications in social networks are done through the Internet. Many of activities via the Internet devices are

observed at internet routers as well as access points, and their activities are recorded in the databases. In this

talk, we investigate events at the fixed-point observation such as the access logs at the Internet routers or firewalls,

and study the method to estimate the utilization situation of the Internet servers. From log data of the end-to-end

connection and its service number, for example, we can know the direct utilization. However, it should be impossible

to obtain links such that a pair of the events are caused by the same origin, because data acquisition is limited to

the event passing through the observation point. In order to obtain such information, i.e., the correlation between

events in the log database, we introduce time-series data analysis method, so called, the detrended fluctuation co-

variance analysis. The signal passing through an observation point are decomposed into signals of several channels,

and activities of the decomposed channels are investigated by using the correlation function of the time-serise data.

In this talk, we examine the method applying to the log-data of the internet connections passing through firewall,

and investigate the dynamical property of the usage of the servers and cooperation property between them.
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1. Introduction

Network structure and its dynamical phenomena such

as Internet traffic are of significant interest. The Inter-

net Protocol (IP) network is a self-organized network with

no central control system, in contrast with ordinary com-

munication networks such as the telephone network. The

IP network can be expanded self-directively using routers,

and communication-signal flows are controlled by the self-

organized adjustment rule. The data are divided into

packets, which are transferred by hopping between routers.

Therefore, the waiting-line or exclusive-control mechanism

may lead to a power-law fluctuation in IP traffic. In fact,

such a power-law fluctuation in IP traffic is observed [1] [2]

[3] [4] [5] just as for real traffic flow [6] [7] [8] [9] [11] [10].

On the other hand, the social-network activity on the In-

ternet affects the dynamics of the Internet. By the recent

spread of the mobile devices among people, many of activi-

ties and communications in social networks are done through

the Internet. Many of activity via the Internet devices are

observed at internet routes as well as access points. The in-

fluence of network structure such as free network and the

dynamics of the network such as power-law fluctuation in

traffic flow can be observed in Internet traffic. For example,

the mechanism of power-law correlations in case of sending

E-mails are investigated in Refs. [12] [13] [14] [15] [16] [17] [18].

Possible origins of these power-law correlations include the

structure of the Internet, internal mechanisms, and demands

for the E-mail server.

It should be remarked that the dynamical behavior of the

Internet traffic is determined not only by the direct use of the

devices but also by the cooperation activity of the Internet

servers. The Internet services work out on the communica-

tions between the Internet servers. The domain name service

(DNS), for example, manages the FQDNs (full qualified do-

main name) and IP addresses for a local site, and answers the

query to resolve the address of an Internet server. The DNS

also send query to an external DNS to resolve the address at

another site. Therefore, the Internet traffic is caused by the

mixture of the communications.

In order to study the dynamical behavior of the Inter-

net traffic such as power-law fluctuation and correlation pro-

file between the Internet servers, we introduce the detrended

fluctuation analysis (DFA) [19] [20]. The DFA is widely used

to detect long range self-correlation in time-series data such

as the stock price movement and traffic flow. Here, we ex-



tend the DFA so as to investigate the mixed time-series

data, which we call detrended fluctuation covariance analysis

(DFCA). In this talk, we focus on the cooperative behavior

of the Internet dynamics. Here, we extend the DFA enable

to investigate the mixed time-series data. We decompose the

mixed signal of the Internet traffic into the selected channels

associated to the Internet services such as E-mails, web ac-

cess, and DNS. By applying the DFCA to the decomposed

channels, we examine the independency or correlation be-

tween the Internet services. We further study the level of

cooperation between DNS servers using the time-series data.

This paper is organized as follows. In Section 2., we explain

the setup of our analysis and data processing for time-serise

analysis from a database. In Section 3., we describe the

method DFCA. In Section 4., we present analysis in detail.

We investigate the power-law correlations, and then measure

correlation function to investigate cooperation property be-

tween the Internet servers. In Section 5., we give summary

and discussion. Finally, we give conclusion.

2. Time-series data processing

We investigate correlation and cooperation of categorized

events in the Internet traffic by using the fixed-point observa-

tion at a firewall (FW). The FW divides into three domains,

i.e., the Internet (WAN), the intermediate zone (DMZ), and

local area network (internal-LAN). The internal-LAN is fa-

ther separated into several virtual LANs (subnets) by using

the firewall. Figure 1 shows the sketch of network topol-

ogy which we take out data from The FW monitors and fil-

ters point-to-point IP communications across these segments,

and it records the logs of all requested TCP/IP connections.

The log records include data such as connecting time, dura-

tion, source and destination IP addresses, the port number

of both endpoints, transfer data size, the flag whether the

connection is permitted or not, and so on. Therefore, using

the log data we can reconstruct Internet connections via the

FW in the form of time-series data.

In this paper, we use log data from FW at KEK. In the

log file there are many fields for connection, we only use a

part of fields.（注1）We drop the IP address after classification

of segments. Table 1 summarizes the properties of the data

used. The LAN denotes the segments including the DMZ

segment just as internal subnets (see Fig. 1). We use the

data extracted from logs for a 36 weeks period from 4 May

2009 to 10 January 2010, and we eliminate connections that

are blocked by the FW and also those from network mon-

itoring systems. We classify the data into two data types:

（注1）：We get parmission to access and use the classified information

after masking the IP addresses.

FW (firewall at KEK)

Internet

DMZ Internal
subnet1

Internal 
subnet2

. . .
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ll ll
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Figure 1 Sketch of IP traffic for our analysis. The network is

divided into the segments WAN, DMZ, and LAN. The

FW controls whether the IP traffic passes through the

network segment. The blue arrow labeled wl represents

the connection from WAN to DMZ. The red arrows la-

beled lw represent the connections to WAN from LAN

(internal subnets or DMZ). The green arrows labeled

ll represent the connections between segments in LAN.

Connections from WAN to internal subnets and from

DMZ to internal subnets are denied by the FW.

one is conn (connection) which is the number of permitted

connections, and the other is flow (data flow) which is the

amount of data transferred. These two types of data are fur-

ther classified in terms of Internet services (protocols) and

the direction of TCP/IP connections. In terms of the direc-

tion of TCP/IP connections, the data are divided into three

groups labeled by wl, lw, and ll, as shown in Fig. 1.

Time frame from 4 May 2009 to 10 Jan 2010

through 36 weeks

Data type conn the number of connections

flow the amount of data transfer

mail SMTP (25)

Service web HTTP (80), HTTPS (443)

(protocol) dns DNS (53)

others others than above

Network WAN Internet

zone LAN DMZ, internal subnets (VLANs)

Transfer wl from WAN to DMZ (LAN)

class lw from LAN to WAN

ll among DMZ and internal subnets

Table 1 Summary of data used.

The label wl indicates the connection from WAN to DMZ

(LAN), lw indicates the connection from LAN to WAN, and

ll indicates the connection between segment pairs in the LAN

segments. In terms of services (protocols), we divide the data

into selected services such as web: the connection at port 80

(HTTP) or 443 (HTTPS), mail : the connection at port 25

(SMTP), dns: the connection at port 53 (DNS), and others:



Figure 2 Time-series data ū(k)(n)(k ∈ { mail, web, dns, others }) for the conn-lw chan-

nels. The period is from 11 May to 24 May 2009. The number of connections is

shown after every 5 min. interval. The connections are superimposed on each

other from bottom to top: mail(blue), web(green), dns(red), and others(gray).

connections at other ports. Therefore, we have 24 channels:

{conn, flow} ⊗ {web, mail , dns, others} ⊗ {wl, lw, ll}.
In what follows, we use the notation “(data type)-(service)-

(transfer class)” or a portion thereof to represent the cat-

egorized data, so-called channel, e.g., conn-mail -lw, conn-

mail, etc. For example, sending an E-mail from LAN to

WAN is recorded in the channel conn-mail-lw, and its size

is recorded in flow-mail-lw, while receiving an e-mail from

WAN is recorded in conn-mail-wl and its size is recorded in

flow-mail-wl. In the same way, browsing through KEK from

the Internet is recorded page by page in conn-web-wl and its

size is recorded in flow-web-wl.

In this paper, we use RDBMS, Oracle12c, to analyze the

time-series data. The RDBMS has fast and strong condition-

matching functionality for huge size of data, and various

useful functions for data mining.

First, from the FW logs we extract record such as connect-

ing time, a pair of IP addresses of the point-to-point TCP/IP

connection, access-permission flag, connection duration, and

data size (see Table 1), and store them into a database as

the raw data. We have about 10 million of records per day,

and about 3 billions of the amount of records in 36 weeks

within permitted connections.

We further invite various technique of the RDBMS to

gain reasonable processing performance such as the table-

separation technique and the star-schema structure. For ex-

ample, the FW logs are stored into the daily tables by using

the table-separation technique, without loss of the seamless

access to the tables. With the table-separation, each of the

daily tables has relatively a small number of records in 10

million instead of a whole number in 3 billions. The daily ta-

bles have no relations each other and we can issue queries in

parallel. Furthermore, with the star-schema structure, each

table is treated as a fact table and does not have text data

directly such as ”http”, ”permit”, ”tcp”, and so on. The raw

text data are stored into dimension tables that compresses a

large-size dimension tables considerably. Consequently, the

computation speed improves considerably and we can calcu-

late various channels in Table 1. The aggregation functions

are useful to calculate the histogram of the number of con-

nections in one minute or five minutes, and to classify the

transfer class, {wl , lw , and ll } from point-to-point connec-

tions.

Fig. 2 shows a part of u(k)(t) for conn for the two-week

period from 11 May to 24 May 2009, where each u(k)(t) of

mail, web, dns, and others is superimposed on the others for

each five minutes interval. In Fig. 2, we find daily frequen-

cies and weekly frequencies. These periodic trends in u(k)(t)

must be eliminated separately.

3. Method

The detrended fluctuation analysis (DFA) is originally pre-

sented to analyze the non-static data by applying the root

mean square analysis of a random walk [19], [20].

Let û(t) a mixed time-series signal in a period T and û(k)(t)

a decomposed signal classified by the K categories. The

time-series dataset {u(k)
n } is obtained as the time-sliced sig-

nal with a period ∆ ̸ t:

un =
∑K

k=1
u(k)
n , u(k)

n =

∫ tn

tn−1

û(k)(s)ds, (1)

where we define tn = tn−1 +∆t and n = 0, 1, , NT = T/∆t.

To each classified dataset, we apply conventional DFA. We

define y-function for each signal, y
(k)
n :

y(k)
n =

∫ tn

t0

(
û(k)(s)−

⟨
u(k)

⟩)
ds

=
∑Nt

t=1

(
u
(k)
t −

⟨
u(k)

⟩)
, (2)⟨

u(k)
⟩
=

1

T

∫ tn

t0

û(k)(s)ds =
1

Nt

∑Nt

t=1
u
(k)
t . (3)

where we define an average value
⟨
u(k)

⟩
. Then, we divide the

period T into M -divided intervals with period TM = T/M :

I(M) :=
[
t
(M)
m , t

(M)
m+1

]
with t

(M)
m = t0 + mTM , m = 1, ..,M .

For the m-th interval we define a trend function using linear

function, ỹ
(k)
m:M (t), which is determined by a least-square fit

of the data in the m-th interval. Therefore, we obtain the



detrended fluctuation function ∆y
(k)
m;M (t) defined by

∆y
(k)
m:M (t) := y(k)(t)− ỹ

(k)
m;M (t). (4)

Therefore, we obtain correlation function between k and k′

channel.

R(k,k′)(TM ) :=

M∑
m=1

∑
tn∈I(M)

∆y
(k)
m;M (tn)∆y

(k′)
m;M (tn) (5)

By using variance mode, we measure the power coefficient

α(k) in the DFA,

F (k)(TM ) := R(k,k)(TM ) ∼ (TM )α(k) . (6)

The power coefficient α(k) shows the profile of the dynam-

ics in the channel k such as the self-organaized α(k) ≃ 1 or

random. By using the covariance mode, we obtain the in-

formation of independent or cooperative. We introduce the

normalized index , i.e., covariant coefficient :

ρ(k,k
′)(TM ) :=

R(k,k′)(TM )√
F (k)(TM )

√
F (k′)(TM )

∈ [−1, 1], (7)

4. Analysis

In this section, we study the correlation between se-

lected channels. We have decomposed channels, {conn,
flow} ⊗ {web, mail , dns, others} ⊗ {wl, lw, ll}, we have

possible 300 correlation functions, i.e., 24 F -functions and

276 R-functions. However, most of them should vanish, be-

cause the origins of the fluctuations can be independent. In

this paper, we focus the cooperation of the Internet servers.

Note that the RDBMS is useful in the DFA analysis.

SQL enables us complex calculation with complex condition

matching by using aggregation with multiple indexes, win-

dow functions, and conditional expressions, we can further

calculate y-function, Eq.(2), which is integral of u(t) with

subtraction of weekly average.

4. 1 Variance and self-organized process

We investigate the categorized data by using DFA. Fig.3

plots the y-functions for the conn-web-lw channel. The green

line represents y-function for the original data. Since we have

a daily and weekly periodic-profile, we extract this periodic

profile by using a frequency trend-function. We define the

frequency trend-function with TQ frequency as the average

of u
(k)
n function of the interval TQ :

ũ
(k)
Q (tn) =

1

NQ

NQ−1∑
m=0

u
(k)

n+m(TQ/∆t) , (8)

(n = 0, · · · , TQ/∆t− 1)

where TQ denotes the period, i.e., day or week, ∆t is the

sampling time interval, and NQ = T/TQ is the cycle length.

WEB SMTP Others ＤＮ S

WEB - × × ○

SMTP × - × ○

Others × × - △
DNS △ △ △ -

Table 2 Covariance coefficients for connections. Upper triangle

represents the coefficients for LW channels, while lower

traiangle for WL chnnels. A symble ⃝ stands for the

clear correlation relation, and △ stands for the week cor-

relation.

Thus, the detrended time series data ūQ(t) is given by

u
(k)
Q,n = u(k)

n − ũ
(k)
Q (tn mod TQ). (9)

The blue line in Fig.3 shows y-function of detrended weekly

frequency. It shows that both the daily and weekly trends

are eliminated from the original data in the detrended y-

function, i.e., the bumpy curve with the daily and weekly

periods (green curve) is smoothed.

Fig. 4 shows the F (k)(TM ) function, Eq.(6), for the web-

wl, cmail-wl, and dns-lw channels. For each channel, the

F -functions are plotted for both the weekly detrended and

the non detrended data: the aqua and green plots repre-

sent the non-detrended F -functions for flow and conn, and

the red and blue plots represent the weekly-detrended F -

functions. The curving disappears from both the weekly-

detrended plots shown in red and blue in Fig.4. We then fit

the fitting with a linear function over the whole range of the

weekly-detrended data. Thus, we find power-law fluctuation

in conn-web-lw and flow-web-lw channel.

4. 2 Covariance and cooperation

First, we analyze the conn channels, {conn}⊗{web, mail ,

dns} ⊗ {wl, lw,ll}, which exhibit power-law correlations in

the DFA. Fig. 5 shows the correlation coefficients, Eq.(7),

for the three directions wl, lw, and ll. For long time scale, we

obtain scattered data in the coefficients, which are caused by

the large error in the correlations. In this study, therefore,

we focus on the data of TM < 2 days (≃ 3000min).

We obtain vanishing coefficient ρ(web, mail) ≃ 0; there-

fore, the activities of web browsing and of sending e-mail

are independent. However, we find correlation coefficients,

ρ(dns, mail) and ρ(dns, web), arenonvanishing. These re-

sults suggest cooperation between servers and clients in the

Internet which is prescribed in the Internet protocols. We

summarize the result of correlation in Table 2.

Next, we examine the correlation coefficients between the

dns channels to understand in detail the level of cooperation

between DNS servers distributed in the Internet in detail.

Fig.6 shows the correlation coefficients for the dns channels

of three-directions, i.e., ρ(dns-wl, dns-lw), ρ(dns-wl, dns-

ll), and ρ(dns-lw, dns-ll). We obtain vanishing or very small



Figure 3 y-function, Eq.(2), for web service in conn data from LAN to WAN (conn-web-

lw). The green line shows conn-web-lw with non-detrended, and the blue line

shows the same thing but weekly-detrended.

Figure 4 Combination plots of F -function for the web channel.
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Figure 5 Correlation coefficients ρ(TM ) between web, mail, and dns channels classified

by direction wl, lw, and ll. From upper to lower panels are shown the coeff-

cients of the wl-direction, lw -direction, and ll-direction, respectively. For each

direction, the red points represent ρ(dns,mail), ρ(dns,web), and ρ(mail, web),

respectively.

correlation coefficients ρ(dns-wl, dns-ll), which is attributed

to the DNS servers holding only the data of the local do-

main. However, nonvanishing ρ(dns-wl, dns-lw) and ρ(dns-

lw, dns-ll) indicate that the DNS servers cooperate. The

nonvanishing coefficient ρ(dns-lw, dns-ll), for example, is

caused by web browsing, i.e., the DNS queries for the dns-lw

and dns-ll directions occur at the same time because of the

cooperation between DNS servers as discussed in the previ-

ous paragraph. While, the nonvanishing coefficient ρ(dns-

wl, dns-lw) can be caused, for example, by receiving e-mails

from the Internet. The DNS query dns-wl is caused by trans-

ferring e-mail from WAN to LAN, and the mail server may
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Figure 6 Correlation coefficients between dns channels. Red,

green, and blue points represent ρ(dns−wl, dns− lw),

ρ(dns−wl, dns− ll), and ρ(dns− lw, dns− ll), respec-

tively.

send the invert request to resolve a FQDN from the IP ad-

dress of which transfers the e-mail.

Next, we investigate correlation coefficients between the

conn and flow channels. This is a test for the randomness

of data size for each connection. Fig.7 shows the covariance

coefficients between the conn and flow data for the same

channel id, (i.e., the pair of service-id and direction-id such

as dns-ll). The coefficients for the dns service reveal a strong

correlation between the conn and flow channels, which sug-

gests the data size for each query is the almost same. The

coefficients for the mail service reveal a weak correlation,

which suggests that e-mail size is random. For the web ser-

vice, we find a strong correlation between the conn and flow

data type compared with that for the mail service. This sug-

gests that the web page size is mostly random, but over the

long run the average web page size is almost the same.

5. Summary and Discussion

We investigated IP traffic via Internet communication us-

ing firewall log. Internet traffic is the effect of network dy-

namics and associated activities of the social network with

Internet services. Toward this end, we extended the DFA

into the DFCA which allows us to investigate the mixed time-

series signals. We classified IP traffic in terms of the type of

IP connection, and decomposed the signal into the channel

signal, (i.e., the channel is classified according to data type,

service type, and direction of connection).

Using the covariance analysis, we examined the level of

independence of the sources of the fluctuation and of the

cooperation in the Internet traffic. We find the vanishing co-

variance coefficient ρ(mail, web) between web andmail chan-

nels, i.e., we consider that the activities of web browsing and

mail sending are independent. In contrast, we find nonva-

nishing coefficients between dns and mail, and between dns

and web. These results reflect the dynamics of Internet traf-

fic, i.e., the cooperation between the mail and DNS servers,

and between the web and DNS servers. We further examined

the level of the cooperation between DNS servers distributed

over the Internet using covariance coefficients. We find the

nonvanishing covariance coefficients between the ll and lw di-

rections and between the lw and wl directions. It should be

remarked that these cooperations between Internet servers

are found without additional information such as Internet

server protocols but using time-series data only.

These results are understood as the fact of cooperation be-

tween servers and clients in the Internet which is prescribed

in the Internet protocols. For web browsing, for example, an

address by FQDN（注2） is used in the URL (see Fig.8). To ac-

cess to the web server, the IP address of the web server must

be resolved from the FQDN. Then, the web browser usually

queries the IP address for the DNS server of neighbors. Thus,

web browsing causes a query for the DNS server. Whether

the query is recorded in the logging file of the FW depends on

the status of the DNS server. Because DNS servers are dis-

tributed databases in which data is hierarchically organized,

only the IP addresses of the local domain are held. If the IP

address is stored in the local database or cached in memory,

the DNS server can quickly answer the query. However, if a

DNS server receives the request for an unknown address, it

asks another DNS server to resolve the address. This causes

another query for the DNS server, and this request can be

recorded in case the query steps over the FW.

The covariance analysis thus detects and classifies the dy-

namical property of the Internet such as the cooperation be-

tween servers and the effect of the social activity via the

Internet. Some of the results can be derived from the pro-

tocols and the mechanism of the Internet services. However,

these results are obtained without using any knowledge of

Internet services in analyzing the time series data.

6. Conclusion

From these results in the DFCA, we arrive at the following

concluding remarks. Using the covariance coefficients for the

detrended fluctuation signals, we can examine the coopera-

tion profile of classified channels. The vanishing correlation-

coefficient shows independence of the pair of channels, while

the nonvanishing correlation-coefficient shows the relation-

ship between the channel pairs. Within this analysis, we

（注2）：FQDN stands for full qualified domain name, which in layman’s

term is callded Internet address.
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Figure 7 Correlation coefficient between flow and conn channels. The left, middle, and

right pannels show the coefficients for dns, mail, and web, respectively. For each

panel, the red, green, and blue points represent the ll-direction, lw-direction,

and wl-direction, respectively.
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Figure 8 Sketch of the cooperation between DNS servers.

can correctly detect the cooperation between Internet servers

even when using the restricted informations obtained by

fixed-point observation.
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