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Abstract モバイルアドホックネットワーク（MANETs）は，既存のインフラを利用せず，無線モバイル端末により

自律的に構築されることから，災害などの緊急事態における利用形態として注目されている．しかし，端末が自律的

に構築する利点は，攻撃端末の参入を許してしまうという欠点もあり，セキュリティ面の課題に直面する．MANETs

では，これまでに多くの攻撃モデルが考えられてきたが，既存研究は一つのモデルにのみ着目し，複数の攻撃モデル

が同時に存在する環境については考えられていない．本稿では，複数の攻撃モデルが同時に存在する環境においても

攻撃端末を特定することを目的とし，機械学習に基づく手法を提案する．提案手法では，ルーティングプロトコルと

して AODVを使用することを想定し，パケットの送受信率などから通常端末と攻撃端末を識別する分類機を作成す

る．シミュレーション実験の結果から，提案手法はどのような攻撃モデルが存在していても高精度で攻撃端末を特定

できることを確認した．
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1. Introduction

Mobile ad-hoc networks (MANETs) have been receiving

much research interests [7], due to their self-organizing and

infrastructure-less characteristics. In MANETs, specifically,

nodes move freely and use multi-hop messages to communi-

cate with each other. Since this kind of infrastructure-less

networks do not require base stations to transmit messages,

they are applicable in many fields, e.g., emergency corre-

spondence and rescuing work. Due to that characteristic,

however, MANETs are vulnerable to malicious nodes. If

malicious nodes join a MANET, or if some normal nodes

are hacked by adversaries, the MANET suffers from their

attacks. That is, normal nodes encounter cases that commu-

nications result in failures.

So far, many attack models, such as black hole attack [5],

rushing attack [10], and sybil attack [1], have been consid-

ered. It is important to identify malicious nodes which exe-

cute the above attacks, for secure communications. Existing

literatures assume that there is only a single attack model in

a MANET. This is obviously unrealistic, because some ma-

licious nodes do an attack, and some other malicious nodes

do different attacks. We thus address a challenging problem

of identifying malicious nodes in MANETs where multiple

attack models exist.

A promising solution is to build a classifier and apply it on

each node. Nodes can utilize the classifier to classify their

neighbor nodes to normal and malicious nodes. Note that

network parameters, such as number of nodes, mobile veloc-

ity, and network size, are unknown, because of self-organizing

characteristic. We therefore have to design a robust classifier

to network parameters, which is also challenging.

In this paper, we propose a method which builds a robust

classifier to environments of multiple attacks and networks

with different parameters. To summarize, the contributions

of this paper are as follows.

（ 1） We classify famous attacks in MANETs into four

categories. We select and test useful features based on the

classification.

（ 2） We propose a method that builds a robust classifier

to classify neighbor nodes based on their behaviors.

（ 3） We propose a weighting mechanism of ensemble

learning for identifying malicious nodes.

（ 4） Our simulation result shows that our method can

identify malicious nodes with high accuracy.

The organization of this paper is as follows. In Section

2, we introduce the preliminary of our work including as-

sumption, attack models, and related work. In Section 3, we

present our proposed method that builds a robust classifier.

We present our result of simulation experiments in Section 4.

Finally, in Section 5, we conclude this paper and introduce

future work.



2. Preliminary

2. 1 Assumptions

The environment is assumed to be a mobile ad-hoc network

(MANET) constructed by wireless mobile nodes. These mo-

bile nodes move freely and their communication range is the

same. As a routing protocol, AODV [16] is employed. AODV

is an on-demand routing protocol. AODV determines a route

to a destination only when a node wants to send a packet

to the destination, using four message types: route request

(RReq), route reply (RRep), route error (Rerr), and hello

message. In AODV, if a source node wants to send a data

packet to a destination node and there is no existing route

in its routing table, the source node broadcasts an RReq. Its

neighbour node which receives the RReq checks whether it

is the destination node. If so, it sends an RRep to the orig-

inator of the RReq. If not, it broadcasts the RReq. Other

nodes which receive the RReq do the same procedure until

the destination node receives the RReq. Nodes monitor the

link status of next hops in active routes. When a node de-

tects a link failure in an active route, it sends an Rerr to

notify other nodes of the link failure. Moreover, each node

checks whether it has sent a message or not within an inter-

val called hello interval. If it has not, it broadcasts a hello

message to notify other nodes of its existence.

Besides, there could be some malicious nodes in the

MANET. That is, some adversaries may join the MANET.

Their objective is to interrupt communications in the

MANET by executing attacks introduced in Section 2.2. We

assume that malicious nodes can change their attack models.

2. 2 Attack models

We introduce attacks executed by malicious nodes. The

following attacks are famous attacks in existing researches

about MANETs security.

Black hole attack [5]: In black hole attacks, a malicious

node acts like a black hole in universe. By sending fake

RReps to all RReqs, the malicious node pretends to have a

route to a given destination. This makes its neighbor nodes

send packets to it. After receiving data packets, the mali-

cious node drops them.

Grey hole attack [17]: The grey hole attack is just like

black hole attack. The difference between black hole attack

and grey hole attack is that in grey hole attack, the malicious

node drops data packets with a certain probability.

Sybil attack [1]: In sybil attack, a malicious node performs

like some other nodes. Malicious nodes send RReps while

pretending specific normal nodes. In such a situation, nodes

around the malicious nodes consider the malicious nodes as

normal nodes. Packets are consequently dragged to the ma-

licious nodes, which disturbs packet transmissions.

Routing packet dropping attack: In routing packet

dropping attack, a malicious node randomly drops routing

messages. For example, in AODV, a malicious node ran-

domly drops RReqs, RReps, and Rerrs.

Rushing attack [10]: Rushing attack is mainly against on-

demand routing protocols. When a malicious node receives

an RReq from its neighbor node, it broadcasts the RReq

quickly over the network before other nodes do. They thus

select it as a target for RRep.

Wormhole attack [9]: In wormhole attack, a malicious

node stores all received messages, and send them to another

faraway malicious node in their own channel, for example, a

wired link or an out of band hidden channel. The other ma-

licious node which receives these messages broadcasts them

locally. This attack creates an illusion that the neighbor

nodes of these two malicious nodes are very close to each

other.

Jelly fish delay attack [15]: In jelly fish delay attack, ma-

licious nodes hold received messages for a while before trans-

mission.

Flooding attack [12]: Flooding attack is an attack for en-

ergy consumption. This attack has many patterns. One

famous pattern is called RReq flooding attack. In RReq

flooding attack, a malicious node broadcasts an RReq with-

out destination. Because all nodes transmit this message,

redundant traffic incurs.

2. 3 Related work

Classification is an effective way to detect malicious nodes

[19]. It has been extensively used for intrusion detection in

wired networks. However, few works investigated the capa-

bility of classification approach for malicious node detection

in MANETs.

Literature [13] conducted some experiments that compare

the performances of five well known classifiers: Naive Bayes,

MLP, Linea, GMM and SVMs. However, [13] considers only

four attacks, and does not investigate the robustness of clas-

sifiers to network parameters, such as area size and number of

nodes. In [14], Nadeem and Howarth presented an intrusion

detection and adaptive response mechanism for MANETs.

This detects a range of single attacks and provides an effec-

tive response to attacks. However, it cannot detect malicious

nodes which execute multiple attacks at the same time.

Literature [2] proposed a machine learning based reputa-

tion system for MANETs, and considered digital signature

based mechanisms that do not require trusted third parties.

A new technique, called dynamic thresholds was also pro-

posed, to improve classification accuracies. This work, how-

ever, did not test the system on the environment of multiple

attacks and did not investigate the scalability to network

parameters.



3. Proposed method

In this section, we present our method for building a robust

classifier. We build weak classifiers and calculate a weight for

each weak classifier. Finally, classification result is obtained

from an ensemble classifier which is created by weights and

all the weak classifiers.

3. 1 Building weak classifiers

To build weak classifiers, we consider useful features, and

the features are obtained by simulations. Features are key

elements in classification approaches, and selecting features

is important to build a robust classifier. To consider and se-

lect such useful features, we first classify the attack models

to some categories.

3. 1. 1 Getting features

Classification of attacks. As discussed before, a large

number of attacks have been considered in MANETs, and

lots of studies classify attacks based on layers or routing pro-

tocols [3]. However, these classifications do not help building

a classifier because they do not classify the attacks based on

their characteristics. We therefore classify the attacks based

on their objectives, namely (i) causing link failure (CLF),

(ii) dropping data packets (DDP), (iii) dragging routes to

attackers (DRA), and (iv) causing redundant traffic (DRT).

The result of our classification of attacks is summarized

in Table 1. Note that some attacks, such as black hole and

sybil attacks, are categorized into multiple classes. For ex-

ample, in black hole attack, malicious nodes send RReps and

drop data packets. This attack has two objectives: packet

dropping and route dragging.

Table 1 Classification of attacks

Class Attacks

CLF Routing packet dropping, sybil attack

DDP Black hole attack, grey hole attack

DRA
Sybil attack, rushing attack, wormhole attack,

black hole attack

DRT RReq flooding attack, hello flooding attack

In our work, a classifier is set on each node. That is, each

node works as an observing node and classifies its neighbors.

Before we introduce the features we use, we introduce the

information that each node observes in Table 2. This infor-

mation is used to create the features. Recall that in AODV,

messages are transmitted by broadcast. Observing nodes

thus can overhear the messages.

In our method, we employ two kinds of features: behavior

features for classifying neighbors and environment features

for estimating network environments.

Behavior features. In Table 3, we define 14 features as be-

havior features. These features are designed from the classifi-

Table 2 Definition of information that observing node obtains

Information Definition

NReqRec # RReq overheard from one neighbor

NRepRec # RRep overheard from one neighbor

NRepSen # RRep sent to one neighbor

NRerRec # Rerr overheard from one neighbor

NRerSen # Rerr sent to one neighbor

NHelRec # hello message overheard from one neighbor

NDatRec # data packets overheard from one neighbor

NDatSen # data packets sent to one neighbor

TReqRec total # RReq observing node overhears

TReqSen total # RReq sent by observing node

TRepRec total # RRep observing node overhears

TRepSen total # RRep sent by observing node

TRerRec total # Rerr observing node overhears

TRerSen total # Re-rr sent by observing node

THelRec total # hello message observing node overhears

THelSen total # hello message sent by observing node

TDatRec total # data packets observing node overhears

TDatSen total # data packets sent by observing node

Table 3 Behavior features

Behavior features Definition

RepSenRatio NRepRec / TRepRec

RepRecRatio NRepRec / TReqRec

RepIgnRatio NRepRec / NRepSen

ReqRecRatio NReqRec / TReqRec

DatSenRatio NDatSen / TDatSen

DatRecRatio NDatRec / TDatRec

DatIgnRatio NDatRec / TDatSen

RerRecRatio NRerRec / TRerRec

HelRecRatio NHelRec / THelRec

AllPckRatio (NDatSen+NRepSen) / (NDatRec+NRepRec)

RepUslRatio NDatRec / NRepSen

RepReqRatio NRepRec / TReqSen

RerSenRatio NRerSen / TRerSen

HelCheckRatio NHelRec / THelSen

cation of attacks. It can be seen that we use ratios calculated

from the information that observing nodes hold. The reason

why we select ratios as features is that ratios are not influ-

enced by network operation time. For example, a network

operated for 100 seconds would have different total packet

transmission numbers to a network operated for 300 seconds.

That is, using number of packets is not suitable for different

network situations. The relationship between behavior fea-

tures and the classifications are illustrated below.

RRep sent ratio (RepSenRatio), RRep ignored ratio

(RepIgnRatio), Rerr sent ratio (RerSenRatio), and Rerr re-

ceived ratio (RerRecRatio) are designed for CLF. A link fail-

ure is caused by network topology change and ignoring rout-

ing messages such as RReps. If routing messages are ignored

by malicious nodes, normal nodes cannot update their rout-



ing tables. Normal nodes thereby cannot transmit messages

at the latest network topology. To deal with this problem,

ratios about the received and sent routing messages are de-

signed to check whether neighbour nodes drop routing mes-

sages or not.

Data received ratio (DatRecRatio), Data ignored ratio

(DatIgnRatio), and RRep useless ratio (RepUslRatio) are

designed for DDP. We can know situations that neighbour

nodes transmit data packets properly, from the ratios cal-

culated from the number of overheard data packets. For

example, if the DatIgnRatio of one neighbor node is much

lower than those of other neighbour nodes, it is reasonable to

consider that this neighbor node ignores some data packets.

Data packet sent ratio (DatSenRatio), RRep checked by

RReq ratio (RepReqRatio), RRep received ratio (RepRecRa-

tio), and all routing packets ratio (AllPckRatio) are designed

for DRA. The reason is that if one malicious node wants to

drag routes to itself, it will send more RReps and receive

many data packets.

RReq received ratio (ReqRecRatio), Hello check ratio

(HelCheckRatio), and Hello message received ratio (Hel-

RecRatio) are designed for DRT. Because malicious nodes,

which execute flooding attacks, send extra hello messages

and/or RReqs to incur redundant traffic, the features are

useful to identify such malicious nodes.

Environment features. We next define environment fea-

tures in Table 4. We define a fixed interval time as a window

time. In a nutshell, each observing node records the num-

bers of sent and received packets in a window time. Let xi

be a number that each observing node counts in a window

time. Assume that we have ω window times, then each node

obtains an environment feature, i.e.,
∑

xi
ω

. All environment

features are created by this approach, and the environment

features are utilized to estimate the network environments.

Table 4 Summary of environment features

Env. features Definition

AvgReqRec Avg. # RReq observing node overhears

Evergreen Avg. # RReq sent by observing node

AvgRepRec Avg. # RRep observing node overhears

AvgRepSen Avg. # RRep sent by observing node

AvgDatRec Avg. # data packets observing node overhears

AvgDatSen Avg. # data packets sent by observing node

AvgRerRec Avg. # Rerr observing node overhears 　　　

AvgRerSen Avg. # Rerr sent by observing node

AvgHelRec Avg. # hello messages observing node overhears

AvgHelSen Avg. # hello messages sent by observing node

AvgNeiMet Avg. # neighbor nodes

3. 1. 2 Under-sampling

The number of malicious nodes is generally less than the

number of normal nodes. Therefore, normal nodes typically

observe the behaviors of other normal nodes. This means

that an observing node obtains less information on mali-

cious nodes compared with that on normal nodes. Such im-

balanced information (data) influences the performances of

classification algorithms [8]. We hence need to alleviate the

influence of imbalanced data.

There are two ways to deal with imbalanced data: over-

sampling and under-sampling. Under-sampling is used in our

method because sufficient data can be obtained from simula-

tions. Information on normal nodes would be similar, mean-

ing that important information will not lose even if some

normal nodes’ information is cut off. We use spread sub-

sample [4] as the under-sampling method. Spread subsample

is a method to generate a random subsample of a dataset.

The ratio of instances (vectors consisting of behavior and

environment features) obtained from normal nodes and ma-

licious nodes, which are used for training, is controlled to

1:1.

3. 1. 3 Classifier building

In our approach, to build a weak classifier, we employ ran-

dom forest [11]. Random forest is an improvement method

over bagged decision trees. Random forest can avoid over

fitting even without pruning because it employs the column

and instance random sampling method. Random forest can

deal with a large number of instances, hence is useful to cre-

ate a highly accurate classifier. Recall that we use behavior

and environment features. Behavior features are ratios while

environment features are numbers. Decision trees are useful

to deal with both values.

Using random forest has three advantages, (i) fast train-

ing time, (ii) capability of dealing with a huge number of

instances, (iii) and accelerating efficiency, due to a large num-

ber of decision trees.

3. 2 Calculation of weight

It is intuitively known that similar network settings re-

sult in similar mean of environment features, and different

network settings result in different mean of environment fea-

tures. From contraposition, similar mean of environment

features result in similar network settings. Also, similar net-

work settings result in similar classifier models. That is, if

two given networks have similar mean of environment fea-

tures, the classifiers of these two networks are similar.

To validate this, we conduct a preliminary experiment.

This experiment investigates the influence of different net-

work environments on environment features and rank of be-

havior features. We employ four network parameters: max

speed of nodes vmax, area size, ratio of malicious nodes, and

number of nodes. As an example, we show the influence of

vmax, on environment features. Area size, ratio of malicious
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Figure 1 Different vmax to environment features (1)
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Figure 2 Different vmax to environment features (2)

nodes, and number of nodes are respectively set as 700 [m]

× 700 [m], 0.2, and 70. We vary vmax from 1.0 [m/s] to 4.0

[m/s].

Figures 1 and 2 show the difference of environment fea-

tures with different vmax. From these figures, we can see

that as vmax increases, AvgRerRec, AvgRerSen, AvgNeiMet,

and AvgHelRec increase. As the nodes in the network move

faster, network topology changes more frequently and link

failures happen more frequently. Consequently, nodes need

to send more Rerrs, and meet more neighbors in a window

time. They hence need to broadcast more hello messages.

Table 5 illustrates the influence of vmax on rank of be-

havior features. This table shows that AllPckRatio becomes

more important as vmax becomes larger. AllPckRatio is cal-

culated by (NDatSen + NRepSen) / (NDatRec + NRepRec).

As vmax becomes larger, network topology changes more fre-

quently. Malicious nodes thus influence larger part of the

MANET. AllPckRatio hence increases.

From this investigation, we can see that environment fea-

tures and ranks of behavior features are influenced by net-

work environments. In the creation of classifiers, ranks of

features play an important role. It is hence essential to build

Table 5 Rank of behavior features with different vmax

R. vmax = 1.0 vmax = 2.0 vmax = 3.0 vmax = 4.0

1 RepRecRatio RepRecRatio RepReqRatio RepSenRatio

2 RepSenRatio RepReqRatio RepSenRatio AllPckRatio

3 RepReqRatio RepSenRatio AllPckRatio RepUslRatio

4 RepUslRatio HelCheckRatio RepIgnRatio RepReqRatio

5 DatRecRatio RepIgnRatio RepRecRatio DatRecRatio

classifiers to fit network parameters. Calculation of weight

helps finding similar network settings of the weak classifiers.

The principal weight calculation is that the more similar the

environment features of a given instance and mean of envi-

ronment features of a training data are, the larger the weight

is.

Given the environment features of a test instance t, we

describe these environment features as a vector Vt. Also, en-

vironment features of a training data set is described as a

vector Vp. For each Vp, we calculate the Euclidean distance,

dist, between Vt and Vp. During this procedure, the max-

imum and the minimum among all the Euclidean distances

are recorded as distmax and distmin. Finally, w[i], which is

a weight for weak classifier i, is obtained by:

w[i] = 1− dist− distmin

distmax − distmin
(1)

Note that small Euclidean distance has a large weight.

3. 3 Weighting based classification

After we calculate weights, we use weights and weak clas-

sifiers to obtain final classification results. The result of each

weak classifier is always probability. In our case, for exam-

ple, class of classification is either normal, or malicious. In

the case of 0.4 as normal and 0.6 as malicious, the classifi-

cation result is malicious. We obtain such probabilities from

the weighting based classification method.

Let w be a weight vector whose element is the weight of

a weak classifier. Also, let pni and pmi be the probabilities

(classification result) obtained by a weak classifier i. pni is

probability of normal and pmi is probability of malicious. We

define the total points of malicious and normal as malsum

and norsum, which are calculated by:

malsum =
∑

w[i] · pmi (2)

norsum =
∑

w[i] · pni (3)

If malsum >= norsum, the result is malicious. Otherwise, it is

normal.

4. Experiment

In this section, we conduct experiments of our proposed

method.



4. 1 Setting

We used network simulator Qualnet [18] to obtain the fea-

tures described in Section 3. 1. 1. In our simulation, the num-

ber of nodes is n. Each mobile node transmits messages and

data packets using IEEE 802.11b device. The radio propa-

gation range of each node is adjusted to about 100 meters,

and the network bandwidth is 11Mbps. Nodes move accord-

ing to the random way point model [6], where the maximum

move speed is vmax and the pause time is 2 seconds. We

randomly choose a pair of source node and destination node

every 2 seconds. If the source node has an active route to

the destination node, the source node sends a data packet

to the destination node directly. Otherwise the source node

broadcasts an RReq to find a route to a destination node.

Note that attack models are categorized into two patterns:

passive and proactive. Passive attacks include black hole at-

tack, grey hole attack, sybil attack, routing packet dropping

attack, rushing attack, wormhole attack, and jelly fish at-

tack. Proactive attacks include RReq flooding attack and

hello flooding attack. Malicious nodes execute a random

passive attack when they receive messages. Malicious nodes

execute RReq or hello flooding attack for 30 seconds and

stop the attack for 30 seconds after the attack. (So, after

the stop, they re-start one of the two attacks again.) During

the attack, they broadcast an RReq or a hello packet every

0.5 second.

Training and testing data are obtained from the simula-

tion executed by varying the parameters illustrated in Table

6. M ratio is the ratio of malicious nodes over n nodes. The

time of each simulation is 300 seconds.

Table 6 Parameter configuration

Parameters Values

vmax [m/s] 1.0, 2.0, 3.0, 4.0

Area size [m] × [m]
500 × 500, 600 × 600, 700 × 700,

800 × 800, 900 × 900, 1000 × 1000

M ratio 0.1, 0.2, 0.3, 0.4

n 50, 60, 70, 80, 90, 100

As we employed random forest as the classifier, so we

tuned the parameters of them properly based on our simu-

lations. The parameters of random forest were decided, i.e.,

batchSizePercent, batchSize, NumIterations, and numDeci-

malPlaces are 100, 100, 100, and 2, respectively.

4. 2 Result

We evaluate the performance of our proposed methods on

several criteria.

(i) Accuracy: this measures the rate of how many instances

are correctly classified among all the instances.

(ii) Detecting rate: this measures how many instances ob-

served from malicious nodes are correctly classified.

(iii) False alarm rate: this measures how many instances ob-

served from normal nodes are wrongly classified.

The objective of our method is to detect malicious nodes,

so we consider detecting rate as the most important among

these 3 criteria.

We compare the results in different situations.

（ 1） Situation 1 (S1): vmax of training set and testing

set are different and the other parameters are the same.

（ 2） Situation 2 (S2): The area sizes of training set and

testing set are different and the other parameters are the

same.

（ 3） Situation 3 (S3): The M ratios of training set and

testing set are different and the other parameters are the

same.

（ 4） Situation 4 (S4): The node numbers of training set

and testing set are different and the other parameters are the

same.

（ 5） Situation 5 (S5): All the parameters in training set

and testing set are totally different.

（ 6） Situation 6 (S6): From Table 6, we get data from

576 network parameter setting. We randomly choose 115

setting for testing sets, and the other 461 setting to obtain

training sets.

We choose these situations because we want to find influ-

ence of each network parameter on our classifier, and we

also want to test the robustness of our ensemble classifier

based on different or unknown network environments. We

compared our weighting mechanism with a naive method, in

which the weight of all weak classifiers are set as 1.

Figure 3 shows the result of accuracy of the naive method

and the weighting mechanism. From this figure, we can see

that the naive method cannot perform well, and the accu-

racy is lower than 80% in each situation. Accuracy of the

weighting mechanism, on the contrary, is very stable, and

always higher than 80%, outperforming the naive method.

Figure 4 shows the result of false alarm rate. From this

figure, false alarm rate of the weighting mechanism is lower

than the naive method, and it is also very stable, always

lower than 20%. In particular, even in S5 and S6, when

the network parameters are random or totally different, the

weighting mechanism can keep low false alarm rate, while

the false alarm rate of the naive method is high.

Figure 5 shows the result of detecting rate. This figure

illustrates that our weighting mechanism can keep a stable

detecting rate in S1, S2, S3, S4, and S5. Detecting rate of

the weighting mechanism is better than that of the naive

method in all the situations.

Finally, we test different classifier building methods. We

employ SVM, J48 tree and Naive Bayes. We only test them

in S5. Figure 6 shows the result. From this figure, the ran-
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Figure 5 Comparison of detecting rate

dom forest outperforms the other classifiers. Note that J48

tree also performs well, proving that decision trees are effec-

tive for our proposed features.

5. Conclusion and future work

This paper addressed the problem of identifying mali-

cious nodes in MANETs with different network parameters

and multiple attacks. MANETs are vulnerable to mali-

cious nodes, so it is important to identify malicious nodes in
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Figure 6 Comparison of SVM, Random forest, J48 tree, and

Naive Bayes

MANETs for secure and proper communications. We pro-

posed useful features for weak classifiers which judge neigh-

bor nodes as malicious or normal nodes. For extracting use-

ful features, we classified popular attacks in MANETs into

four categories. We designed two sets of features: behav-

ior features for classifying neighbors and environment fea-

tures for estimating network environments. We used under-

sampling to deal with imbalanced data in data set obtained

from simulations. We then used weights and weak classifiers

to achieve final result. A series of experiments were con-

ducted to measure the performances of our proposed method.

The simulation results show that our method can identify

malicious nodes in MANETs effectively.

As a part of our future work, we plan to create a group de-

cision method for isolating malicious nodes, after they have

been identified. Because only identifying malicious nodes is

not enough, we have to consider a method to block them,

making it no longer execute attacks.
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