

DEIM Forum 2017 F6-3

Finding titles representing segments of Wikipedia

Articles from keyphrases

Hao Hu Shan Liu Mizuho Iwaihara

Graduate school of Information Production and System, Waseda University

2-7 Hibikino, Wakamatu-ku, Kitakyushu-shi,Fukuoka-ken, 808-0135 Japan

E-mail: waseda-tezuka@fuji.waseda.jp, vickey-liu@toki.waseda.jp, iwaihara@waseda.jp

Abstract: Wikipedia is a free online encyclopedia that aims to allow anyone to edit any article or create them.

However, articles tend to become long and complex, so giving appropriate titles or key phrases to untitled segments is

necessary for reader assistance. In this paper, we show methods to select titles for representing article segments. Key

phrase extraction has been studied for years, but we concentrate on selecting a title phrase for a given target segment

from candidate phrases, which needs to reflect local and global contexts. In this paper, we evaluate five features we

proposed before, and one new feature which is based on word embedding. These features are combined to produce a

ranked list of candidate titles. We construct over a candidate title set consisting of titles of articles, sections and

subsections, and anchor texts of inner links (inter-article links) where the hidden title of the target segment is the ground

truth. We compare performance of various feature combinations by precision@K, reciprocal rank and average precision.

Keyword: Wikipedia, Finding Representative Title, Candidate Ranking

1. Introduction

Wikipedia is a free, web-based, global volunteer

collaborative repository of various articles on

different aspects. This large and general reference

work consists of more than 40 million articles in

more than 250 different languages. Due to the large

number of visitors and everyone could edit article s

in his own opinion, articles tend to become long

and complex for readers to capture the content with

a clearer view. So, a title which could represent the

whole content is so important when author intends

to remind readers what he or she is going to

emphasize. In Wikipedia, a large number of

articles are usually constructed of several sections

with subsections inside. These titles vary in forms

from sentences to simply single words to refer. In

addition, a substantial number of articles are

unfinished and changed over time. Like an article

for biographies of people, several events in which

a person is involved usually do not end up when

the article was created. The author would fill his or

her work with an ending, while the title could not

cover the current content or sometimes leave it as a

blank. So, it is necessary for us to find an

automatic method to generate a new title for an

article and its sections, and subsections.

 In conventional methods, most approaches like

to extract keyphrases from the target article itself

to get close to the objective view of humans. Key-

phrase extraction is an intensively studied area in

the field of text mining. Extraction methods are

usually based on statistical combined with NLP

(Natural Language Processing) field. For instance,

the basic TF-IDF (term frequency and inverse

document frequency) combined with chucking to

generate n-gram keyphrases. Another example is

the generative topic modeling, which assumes that

each document is a mixture of a small number of

topics and that each word’s creation is attributable

to a combination of the document’s topics. These

words could later build a word set for key phrase

generation. In our previous work[7], we

concentrated more on the phrase generation part to

mine possible keyphrases. Following, we used

FP-growth[11] for frequent co-occurring word

extraction. Keyphrases are built from a set of

words, which has an advantage of flexible phrase

combinations no matter where a possible word

occurs in the segment. In addition, we incorporate

neighboring articles for keyphrase extraction that

means similar or linked articles in Wikipedia.

Applying phrase generation methods like

FP-growth[11] could mine possible word from the

neighbor we build.

 However, different from our previous work,

finding keyphrases most important or fitting as a

title of the target segment is still requiring

improvements. Keyphrase extraction is so

subjective and varies with each individual. In this

paper, we integrate five features proposed in [7]

with a new feature based on topic vectors utilizing

word embedding to estimate phrase quality from a

candidate set which is fit as a title of the target

segment. We use a linear function to combine these

features and train them by gradient descent to

obtain appropriate parameters for an article corpus.

These features are combined to produce a ranked

list of candidate titles set with different

combinations. Top-ranked phrases are generated as

titles. In evaluation part, we construct over a

candidate title set consisting of titles from articles,

their sections, subsections, and anchor texts of

inner links (inter-article links) where the hidden

title of the target segment is the ground truth .

The remainder of this paper is organized as:

Section 2 is mainly about related work, Section 3

is the review of our previous work, Section 4 is the

candidate object study in our work, Section 5 is

about experimental studies, Section 6 is the

conclusion and future work.

2. Related Work

For existing approached to supervised and

unsupervised phrase extraction job, the methods

can be categorized as follows.

1. An unsupervised method for keyphrase

extraction is utilizing TF-IDF [8] to rank

candidate keyphrases (here chucks as

candidates) and select top-ranked ones.

2. TextRank [9] is one of graph-based ranking

methods for extraction intended to build a

word graph in which edges represent semantic

relatedness between two co-occurring words.

3. KEA [12] (Keyphrase Extraction Algorithm)

KEA algorithm is a supervised extraction

algorithm for long documents. A Naïve-Bayes

classifier on term frequency and term position

features is trained o produce phrase ranking

lists.

4. LSA(Latent Semantic Analysis) [13] &

LDA(Latent Dirichlet Allocation) [2]:The

former is a topic modeling technique , learning

word and document representations by

applying singular value decomposition to a

words-by-documents co-occurrence matrix.

LDA is a generative topic model assuming

words in each document were generated by a

mixture of topics, where a topic is represented

as a multinomial probability distribution over

words.

5. FP growth(frequent pattern mining) [11] This

method intends to extract frequently occurring

word sets to obtain an order-free word set. In

our previous work, we adopted this method,

as our target texts are varying in length,

meaning that certain segments are just a few

sentences over dozens of sentences. In addition,

FP-growth can be applied to articles which are

related to the target article, to discover more

candidate phrases.

 The above methods show different approaches to

phrase generation. However, TF-IDF prefers high

frequency term, KEA method is a supervised

method and a large number of efficient training

segments are necessary. LDA could be used to

discover topically-related, but not appearing in the

target segment can be discovered, but its training

corpus should be sufficiently large. Related

Wikipedia articles have to be carefully selected for

topic extraction.

3. Phrase Generation

In this section, we discuss finding keyphrases

for the target segment as a candidate title set. We

could consider the usage of existing methods

described in Section-2. In our previous work[7],

we apply frequent pattern mining on the target

segment. Below we briefly describe the method.

3.1 Related articles

 Here we all related articles as articles either

linked from the target article, or having significant

overlaps with the title words of the target article.

We can sample candidate phrases from the these

related articles. Such related articles can provide

candidate phrases which may not occur in the text

of the target segment. We apply standard

preprocessing, such as stop words, to the corpus of

the related articles.

3.2 Frequent Patterns

Frequent patterns on words are order-free sets

of words which frequently co-occur frequently in

documents[11]. FP-growth can extract frequent

word sets be from the corpus, then they can be

utilized as candidate phrases. This approach allows

us to find phrases having different word orders and

containing unrelated words in the middle. But for

finding the most popular word orders on phrases,

we can utilize query results on search engine s, and

n-gram corpus such as Google-Ngram.

4. Phrase Quality Estimation

To compare the fitness of candidate phrases as

the title of the target segment text, we utilize

existing features and introduce a new feature . The

five existing features are Coverage[10],

Phraseness[7], Uniqueness[7], Potentialness[7],

Sim-PF[7]. We then introduce the new feature

Embedding-Vector, which evaluate semantic

relatedness between the word vectors, generated by

paragraph2vec[4] of the target and related articles.

In the following, the corpus is denoted by C.

4.1 Quality Phrase Features

Coverage [10]:

A representative keyphrase should cover man y

articles. Coverage gives a high score to phrases

that occur frequently in the corpus C of the related

articles:

 𝑆𝑐𝑜𝑣(𝑝) =
𝑓(𝑝)

|𝐷|
 (1)

 Where 𝑓(𝑝) refers to the frequency of phrase p

occurring in corpus C and |𝐷| refers to the number

of articles in C.

 Uniqueness [7]:

 A representative phrase should be more frequent

in the target segment rather than the other

segments in the same article.

 Uniqueness captures such locality of the phrase

within the target article. In (2), here 𝑓(𝑠) is the

number of sections in the target article. |𝑆| is the

number of sections in the target article. 𝑓𝑠(𝑤) is

the frequency of word w in segment s.

 𝑆𝑢𝑛𝑖(𝑤) = log (
|𝑆|

𝑓(𝑠)
∗

𝑓𝑠(𝑤)

∑ 𝑓𝑠′(𝑤)+1𝑠′∈𝑆,𝑠′≠𝑠

) (2)

 The uniqueness of phrase p is defined as the

average of the uniqueness scores of the words in p :

 𝑆𝑢𝑛𝑖(𝑝) =
∑ 𝑆𝑢𝑛𝑖(𝑤)𝑤∈𝑝

|𝑝|
 (3)

 Potentialness [7]:

 The feature potentialness is to evaluate

relatedness of a phrase to a segment by cosine

similarities on latent topic vectors. We construct

topic vectors on the corpus C by Gibbs LDA[2],

with a given topic number k. Potentialness can

capture relatedness of phrase words even when the

words are not appearing in the segment.

 𝑆𝑝𝑜𝑡(𝑤|𝑠) = ∑ 𝑝(𝑤|𝑡𝑗) ∗ 𝑝(𝑡𝑗|𝑠) (4)

𝑘

𝑗=1

In (4), k is the latent topic number, 𝑝(𝑤|𝑡𝑗) is the

word-topic distribution computed by Gibbs LDA.

The potentialness for phrase p is defined as the

average of the potentialness values of the words in

p:

 𝑆𝑝𝑜𝑡(𝑝) =
∑ 𝑆𝑝𝑜𝑡(𝑤|𝑠)𝑤∈𝑝

|𝑝|
 (5)

Phraseness [7]:

A word set is considered as a good phrase if the

words in the set often co-occur in an identical

sentence. The phraseness defined in (6) evaluates

how often the words of a phrase p appear in one

sentence:

 𝑆𝑝ℎ𝑟 (𝑝) = ∑
𝑓𝑖(𝑝)

𝛱𝑤∈𝑝𝑓𝑖(𝑤)

𝑛

i=1
 (6)

 Here, i denotes the i-th article in corpus C, n

denotes the number of the articles in C, 𝑓𝑖(𝑝)

denotes the times phrase p occurs in an identical

sentence of article i, and 𝑓𝑖(𝑤) denotes the times

word w occurs in article i.

 Sim-PF(Similarity-weighted Phrase Frequency)

[7]:

 This feature gives a high score to a phrase if p is

frequently occurring in segments having high

similarities with the target segment. We rank the

articles in C, from i=1 to i=n, by the TF-IDF cosine

values with the target segment. Then we compute

the product of the ranking and log-frequency of p

in article i.

 𝑆𝑎(𝑝) = ∑
𝑛−𝑖

𝑛

𝑛

𝑖=1
∗ log(𝑓𝑖(𝑝)) (7)

Utilizing similarity ranking instead of raw

similarity scores gives us an ideal weighting on

articles.

Embedding-Vector:

Inspired by [4], we transform the text of a

segment s into a fixed-length feature vector. The

previous five features mainly focus on

distributions of words in the target segment and

related articles. On the other hand, paragraph

vectors allow us to measure semantic relatedness

between the target segment and candidate phrases

in a coherent manner, where vectors can be trained

over the whole English Wikipedia articles. In this

feature, we evaluate by cosine similarities between

the vectors of the phrase and segments, where

segments are weighted by similarity ranking to the

target segment:

 𝑆𝑣𝑒𝑐(𝑝) = ∑
𝑛−𝑖

𝑛2
∗ 𝐶os(𝑉𝑝 , 𝑉𝑠𝑖)𝑛

𝑖=1 (8)

 Here, 𝑉𝑝 is the vector for phrase p , 𝑉𝑠𝑖 is the

segment vector for the i-th segment in the top-n

similar articles, where the first segment is the

target segment itself, and the second and following

segments are the remaining segments in the corpus

C, ranked by the TF-IDF scores with the target

segment. Finally, the score is normalized to 1 by

dividing by n . In this paper, we choose n to be 10.

 4.2 Linear function for ranking

The six features are combined with a linear

function to calculate scores for candidate phrases.

The candidate phrase having the highest score will

be selected as the title of the target segment. . The

score function is defined as follows:

𝑆(𝑝) = 𝜃0𝑆𝑐𝑜𝑣(𝑝) + 𝜃1 𝑆𝑝ℎ𝑟(𝑝) + 𝜃2𝑆𝑢𝑛𝑖 (𝑝)

 +𝜃3𝑆𝑝𝑜𝑡 (𝑝) + 𝜃4𝑆𝑠𝑖𝑚(𝑝) + 𝜃5𝑆𝑣𝑒𝑐(𝑝)

 (9)

Here, 𝜽 = [𝜃0 , 𝜃1 , 𝜃2, 𝜃3 , 𝜃4 , 𝜃5] denotes the

weight vector on the six measurement features.

To find an optimum weight vector 𝜽, we appl y

gradient descent [7].

4.3 Classifiers of features

Besides linear function, we can also consider

utilizing various binary classifiers for combing

the features. Since our goal is to find a title for

the target segment, we try to rank all candidates

according to the fitness of each classifier.

Four classifiers here are applied in this paper:

Logistic Regression, Naïve Bayes, Support Vector

Regression and Random Forest.

In Logistic Regression and Naïve Bayes, we

rank candidates by possibility score only when

the candidate is a quality one (candidate label is

1).

Support Vector Regression is a variation of

SVM (Support Vector Machine) for regression.

We choose RBF kernel for our task and rank

candidates according to regression score s.

Except Random Forest, the other classifiers are

trained by 63 different feature combinations to

obtain the best result . Random Forest generates a

number of decision trees, where each tree is

formed by the random feature combination.

Random Forest is also trained here for the

regression task to rank candidates.

5. Experiment

In this part, we perform experiments to test the

performances of various feature combinations by

precision @K, reciprocal rank and AP (Average

Precision).

5.1 Dataset:

We extend the dataset in our previous work[7],

choosing typical English Wikipedia articles which

could represent different aspects like biography of

people, historic event, Science, Politic.

Data set corpus is filled with a large number of

segments and these segments have subsection titles

and their upper titles, inner link titles in the

segment. In addition, for each article in this corpus,

we would download its related articles to form the

neighbor. Usually, the related article ’s size is

thousands to support. Corpus C represents for the

neighbor Top-K most similar article to target

segment. In this experiment, we set the K value 10.

The following table shows our dataset details :

Corpus Quantity

Segments 266

Candidate titles 7,179

Table.1 Dataset Corpus

In this experiment, we construct a Corpus set

consisting of 3 parts.

1. The segment title and its upper title if

possible

2. The inner link title appears in the segment

which is pretty related to the target segment

itself.

3. Other segment titles in the same article,

they are like bad phrases.

Average number Quantity

Segment title and

upper title

2

Other titles in the

same article

9

Inner link titles 15

Candidate Titles 26

Table.2 Candidate Title Set and Average Number

of candidates.

5.2 Golden Standard

These three parts showed in Table.2 construct a

candidate title set for a target segment. We treat

part 1 titles(segment titles and their upper titles) as

golden standard and test if our work could find

these original titles at Top-K in the ranking list.

5.3 Evaluation

 Since our work is evaluated by the position of

correct answers in the ranking list, here we

introduce 3 conventional methods to estimate

performance.

Precision@ K: Precision at k documents (P @K) is

still a useful metric (e.g. P@5 or "Precision at 5"

corresponds to the number of relevant results on

the first search results page), but fails to take into

account the positions of the relevant documents

among the top k. Another shortcoming is that on a

query with less relevant results than k, even a

perfect system will have a score less than 1. It is

easier to score manually since only the top k

results need to be examined to determine if they

are relevant or not.

In this experiment, we are concerned about

Precision@ K result and set K value at 1, 3, 5.

Reciprocal Rank: Considering the position of the

first relevant document position, Reciprocal rank

is the inverse rank number

Reciprocal Rank =
1

𝑅𝑎𝑛𝑘 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 (13)

AP(Average Precision) : Average precision for a

set of queries is the mean of the average precision

scores for each query.

𝐴𝑃 =
𝐴𝑣𝑒 ∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄

𝑞=0

𝑄
 (14)

Here in formulation 13, q query in our experiment

means every segment, 𝑃(𝑞) denotes for Precision

@K. Q is the number of total segments.

Like in table.3, we have a ranking list for segment

“Early life” in the article “Hillary Clinton”. This

table would be shown as the following example:

Precision@1, 3, 5. Average Precision, Reciprocal

Rank. The original title is listed at position second

and we could get the data as table.4 shows.

Candidate title Score

Westchester County 0.1107

2006 re-election campaign 0.1040

United States Senate 0.0793

Jeanine Pirro 0.0704

Jonathan Tasini 0.0670

John Spencer 0.0450

District Attorney 0.0442

Table.3 Candidate Ranking of Segment: “2006

re-election campaign” in “Hillary Clinton” article

by five features.

Earl

y life

Precisi

on

@1

Precisio

n

@3

Precisio

n

@5

Aver

age

Preci

sion

Invers

e

Rank

Cov 1/1 1/3 1/5 0.51 1/1

Cov

Phr

1/1 1/3 1/5 0.51 1/1

Cov

PhrP

ot

0/1 1/3 1/5 0.17 1/2

Cov

PhrS

im

1/1 2/3 2/5 0.68 1/1

Cov

PhrU

ni

0/1 1/3 1/5 0.17 1/2

Covp

ot

1/1 1/3 1/5 0.51 1/1

SixF

eatur

es

0/1 2/3 2/5 0.35 1/2

Table.4 Evaluation table on segment “2006

re-election campaign” in article “Hillary Clinton”.

 5.4 Training part

 For dataset which consists of 266 segments, we

split them into two parts.

 The First part, we have 196 segments for

training. They are selected from the article "Greek

mythology", "Barack Obama", "Bryan Gunn",

"John Sherman", "Wood Badge", "General

relativity", "Society of the Song dynasty",

"Richard Nixon", etc.

 These segments are used for Gradient Descent

training to obtain the fixed parameters for each

feature.

 In addition, we leave 70 segments to test the

performance of our work. They are from the article

"Hillary Clinton", "Attachment Theory", "History

of Minnesota", "Domitian", "Political integration

of India", etc.

 At last, We have the six features in our

experiment which means 63 different combinations.

Table 3 would show the final fixed parameters for

8 examples.

 Cov Phr Sim Uni Vec Pot

Six -0.04 -0.01 0.11 0.06 0.05 0.05

NoCov -0.01 0.08 0.06 0.04 0.04

NoPhr -0.04 0.1 0.06 0.05 0.05

NoUni 0.01 0.03 0.06 0.06 0.06

NoSim -0.04 0.00 0.11 0.06 0.05

NoVec -0.03 -0.01 0.11 0.07 0.06

NoPot -0.02 -0.02 0.12 0.07 0.08

Table.5 Seven examples of different feature

combination parameters after training from linear

model.

 5.5 Result

 In this part, we would show the final work

performance on 63 different feature combinations.

The table 4 shows the Top-8 highest AP score in

Precision @1 ,3 ,5 and Reciprocal Rank.

Method P@1 P@3 P@5 AP Inverse

Rank

CovPhr

Vec

0.289 0.202 0.156 0.2164 0.4512

CovVec 0.2753 0.183 0.294 0.2119 0.4470

CovVec

Pot

0.2753 0.183 0.289 0.2109 0.4475

Cov 0.2318 0.188 0.270 0.1942 0.4046

CovPot 0.2318 0.188 0.270 0.1942 0.4046

VecPot 0.2463 0.173 0.251 0.1903 0.4188

Table.6 Top-6 highest Average Precision from

linear function.

Method P@1 P@3 P@

5

AP Inverse

Rank

Logistic R

CovVecPot

0.275 0.227 0.28 0.2244 0.4689

Linear

CovPhr

0.289 0.202 0.26 0.2164 0.4512

Logistic R

CovPhrVec

0.289 0.193 0.26 0.2131 0.4470

Naïve B

CovVecPot

0.246 0.227 0.27 0.2128 0.4502

Linear

CovVec

0.275 0.183 0.29 0.2119 0.4470

SVR

VecPot

0.231 0.207 0.32 0.2112 0.4463

Random

Forest

0.159 0.154 0.24 0.1539 0.3648

Table.7 Top-7 highest Average Precision across

different classifiers

 From table 6, we see that our work could find

the correct title from the title candidate set in

which the highest AP score reaches 67.34%

precision. In addition, Embedding-vector, coverage

and Phraseness features support the function to

obtain the best result.

 Reciprocal rank here is the mean average score

across different segments. The larger the score is,

The higher position golden standard appears in the

ranking list. That is, we could find the correct

answer quickly. In our experiment Method

Embedding-Vector, Potentialness and Coverage

feature combination in Logistic Regression shows

the best result.

 Besides the linear model Logistic Regression,

we also study different classifier performances.

Performed as Table 7, linear function with

Coverage, Phraseness feature combination

performs well. However, other classifiers like

Naïve Bayes also has good result as its inverse

rank score is close to the linear function highest

score ranking at 2nd. While other classifier ’s

performance, such as random forest is not very

ideal.

 Since the limit of pages, we could not show all

the 63 combination results.

6. Conclusion and Future Work

Our work aims to find an appropriate title for

the target segment is working according to the

final result. When adding the appropriate

candidate phrase like FP-growth, we could find

quality phrases to form a new title automatically.

Although, In table.6, feature Embedding-vector

may show better performance. We still have to

point out that the Embedding-Vector method is

not stable. It is necessary to retrain the article

corpus until a balanced state.

Referenced Work
[1] R. Baeza-Yates, B. Ribeiro-Neto, et al.

Modern information retrieval .

[2] D.M.Blei, A.Y.Ng, and M.I Jordan. Latent
Dirichlet Allocation . Journal of Machine
Learning Research, 3:993-1022, 2003.

[3] S. Liu,M Iwaihara. “Extracting
Representative Phrases from Wikipedia Article ”
2016 DEIM Forum.

[4] Le, Mikolov “Distributed Representations of
Sentences and Documents”. The 31th
International Conference on Machine
Learning ,

[5] I.Hulpu, C.Hayes,D.Greene, “Unsupervised
Graph-based Topic labelling using DBpedia”,
Pro. of ACM WSDM’13, pages 465-474, 2013.

[6] Z. Liu, W. Huang, Y. Zheng, and M.
Sun,”Automatic key phrase extraction via
topic decomposition”, Proc. Of the 26

t h

Annual Conference on Learning Theory, 2013.

[7] S. Liu, M. Iwaihara, “ Extracting
Representative Phrases from Wikipedia Article
Sections”, ICIS Conference, Special Sessions,
June 2016.

[8] Salton and C. Buckley “Term-weighting
approaches in automatic text retrieval.”
Information processing and management,
pages 513-523 1988

[9] Mihalcea and P. Tarau. “Textrank: Bringing
order into texts” In Proceedings of ACL, pages
825-833

[10] M. Danilevsky, C. Wang etc, ”Automatic
Constuction and Ranking of Topical
Keyphrases on Collections OF Short
Documents”, Proc.of 201 4SIAM Int. Conf. on
Data Mining (SDM’14),2014

[11] J.Han, J.Shang etc,“Mining Frequent
Patterns without Candidate Generation”
Conference on Empirical Methods in Natural
Language Processing(EMNLP), pages
366-376 2010

[12] Ian H.Witten, Gordon W.Paynter etc
“KEA: Practical Automatic Keyphrase
Extraction” ACM DL 1999 pages 254-255

[13] S.C. Deerwester, S.T. Dumais etc,
“Indexing by latent semantic analysis” Journal
f the America Society of Information Science
pages:391-407,1990

