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Abstract In modern search engines applications, query autocompletion is a useful feature which can save many keystrokes
from inputting the entire query. As the autocompletion features of search engines have become more and more popular,
many variations of query autocompletion appear in various scenarios, e.g. error-tolerant autocompletion and common phrase
autocompletion. In this paper, we propose a novel autocompletion paradigm Qaiéeg Autocompletion for Abbreviated
Queries and propose a prefix-network based index to solve this idéieeeatly. We conduct some experiments with classical
trie-based method using a large dataset. Experiments show that our method outperformed the classical method.

Key words Query autocompletion, prefix-network, text database search.

. so that users may input queries like acronyms or abbreviation in-
1. Introduction ) o -
stead of letter by letter. We give an motivating example in Fig. 1.

Query autocompletiohas become a useful feature and been studfor example, in IDE, users may type “GNV” to get the function
ied for a long time since the appearance of search engines. As thiGetNextValue()”. We call this kind of problerAbbreviated Query
feature can save many key strokes from inputting the entire query, Autocompletion This problem is quite challenging because cur-
has been considered a standard function of search engines. Besidesntly there’s no approach to solve it very well. The most similar
traditional text search engines, query autocompletion also has widgpproach is to model it using common subsequence techniques, but
application domains including common shells, integrated develwe find that common subsequence model cannot solf&dtently
opment environments (IDEs) and special text abbreviation searclbecause we will not consider every subsequence like “NV” or “GV”
Also, as query autocompletion usually needs to response the itan get the function “GetNextValue()”. To model this novel query
coming query in a very short time andfBer from heavy query more suitably, we propose a novel problem definition to define “Ab-
throughput, query autocompletion on modern databases need to beeviated Query Autocompletion”.
more dficient to improve the user’s experience. An autocompletion Additionally, it is also very hard to answer Abbreviated Query ef-
query often returns all the objects begins with the textual prefixficiently using existing techniques. One approach is to conduct the
More useful scenarios are, users want to search for the most relatsdarch on a prefix trie, but for every character, it needs do the ex-
objects, and then this issue changes into the autocompletiok tophaustive search throughout current subtree recursively. This method
query, which returns objects after calculating and ranking objectsvill result in extremely expensive computation when a query con-
according to their textual popularities. tains too many characters.

Autocompletion has become a standard feature these years. ThisTo deal with this problem, we propose a prefix-network index
important feature can return the search results when user is typirgructure called PNI. It transforms a trie into a prefix-network by
the partial keywords letter by letter and accordingly pop a pull-downmerging trie nodes which share the same special characters. It also
list to show the most intended items. After that user just need choosattaches a unique bit array as an indicator on each network node
the correct entry to save the tedious inputting time. to do dficient pruning when traverse the network. In search phase,
AbbreviationQuery abbrquery; the given query traverse the prefix-network from the root node and
abbrquery . gny check the bit array indicator to decide if stop traversing. We also

@ void GetNextValue()f...}

i, GetNextVariant ) ) . ) ) -
@, GetNextVector doing interval intersection. Besides that, we also utilize the net-

devise an fiicient result fetching algorithm to fetch the results by

work’s nodes subsumption properties to speed up the result fetching
Figure 1 A Motivating Example . . .
) ) time and duplicate-removal time.
In this paper, we propose a novel query autocompletion features . i i L
In this paper we mainly study the autocompletion of abbreviation



query and then extend our index to support processind tqyery. 2.1.1 Trie-based Text Search
(.13 Efficient string prefix search based on trie index was first pro-
9

[1,3]//[‘1;&‘ T posed in Baeza-Yates et al.’s work [1] in 1996. In his work, he also

f\ 48 — =09 [10,10] 'T .l proposed a patricia tree approach to save the index space. After that,
g ¥y p G T community of information retrieval begins to focus on autocomple-
? [46 77 88l | | Y tion using trie index. A large amount of studies[2], [11], [12] have
'\q '\" been done to improve the autocompletion queries’ qualities in the
i i \r ? T v past decades. Besides that, some works [8], [9] focus on reducing
i 1 s T 9 i the index size by various compression techniques in order to fit the
AR X Y I S A S TR B P index into server's main memory. The basic index structure used in
E a/v\e " = YYY Y h? a/v\e these works is the classical trie structure showed in Fry.How-
. | L . | . \l [\) : ‘| . | L ever, these works mainly focus on improving the autocompletion re-
. D @ D @ . P D @ . D @ sults qualities by ranking and calculate relevances carefully instead
. (:, . (:, L 3‘/ n @ D @ of focusing on searchfgciency.
l i r l l r l l i l l l ; 2.1.2 Error-Tolerant Query Autocompletion
o OO 000 O O O O O O. O o. o Error-Tolerant Autocompletion (ETA)[6] studied the problem
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that when a user issues a partial query which contains some typos,

Figure 2 Merge Uppercase Node the search engine can still identify the intended query and give the
correct answers. META[6] put forward by Deng et al. is consid-
Our main contributions are summarized as follows. ered the state-of-the-art work currently. In META, they proposed a
(1) Propose a novel query autocompletion feature Abbreviatior{namhing'based framework, which computes the answers based on
matching characters between queries and déiciently. Besides

that, some works [3], [4], [10], [13], [14] also solve the ETA prob-
(2) Propose a novel prefix-network index PNI to deal with the jem using various techniques.

Abbreviation Query #iciently. 2.2 Tolerant Retrieval and Wildcard Query
Tolerant Retrieval problem [5] comes from information retrieval

Query and give the problem definition.

(3) Propose anféicient results fetching method which can fetch
community and has been studied for many years. The query model

the results by intersecting intervals.
of this problem called wildcard query. This means a query such as
(4) Devise a method to speedup the result fetching time ang*g*y*, and seeks documents containing any term that includes all
duplicate-removal time based on network nodes subsumptiothe three characters in sequence, e.g, nagoya, nergy. The * sym-
relationships. bol can be replaced by any characters. This kind of query is es-
i . ) pecially useful when users are uncertain about how to spell query
(5) A simple experiment has be conducted to compare with ex- o
. term, or want to seek documents containing any of the term. A clas-
isting method and the results show our method outperforms the ] ) ) )
. sical approach to solve this problerfiieiently is to use a special
classical one. . ) )
index called permuterm index[7]. It attaches a special symbol $
The rest of our paper is organized as follows. In section 2., we showfter each string and them calculate variants of each string by rotat-
some related works. In section 3., we will give the formal probleming the string by one step. And then index all these variants into a
definition. In section 4., we will give the fundamental index struc- tree-like index to do ficient search.
ture called PNI and show ourfficient search and result fetchin s
) ) ) ) _ 9 3. Problem Definition
algorithm. In section 5., we use a simple experiment to verify that
our algorithm outperforms the classical method. Below we'll give our data model and query model.
3.1 Data Model

SupposeD is a textual database, which consists of a lot of ob-

2. Related Work

2.1 Trie-based Autocompletion jects {0y, 0y, ..., O, ...,0On). Each object is defined astaple =
In order to obtain the strings with the same prefikagently, trie-  {O.id, O.string, O.staticscorg, whereO.id is the object id which
based index becomes very popular and is adopted as the fliost eis a unique numbeg.string is a single string which represents ob-
cient way to implement autocompletion among the current researcject’'s name, an@.staticscores the object’s popularity.
works. Figure. 2 shows a standard trie built based on data in Table 1. In our running example, we use a textual database showed in Ta-
ble. 1 for easier demonstration.



Table 1 Textual Databage

ObjectID String Popularity
(o]} ApdNextChar 0.4
(0]} ApdNextValue 0.9
O3 ApdNextVector 0.9
Oy GetNextChar 0.7
Os GetNextValue 1.0
Og GetNextVector 0.5
O7 GetPrevValue 0.4
Og GetTimeOfDay 0.1
Og GitNextValue 0.1
O10 GotNextValue 0.1
O11 RmvNextChar 1.0
O12 RmvNextValue 0.3
O13 RmvNextVector 0.3

3.1.1 Token-based Data Preprocessing

We'll use a tokenizer to do the data preprocessing in order to build
our index more conveniently during subsequent steps. We use the

Note that we consider uppercase and lowercase is non-sensitive in
the match betwee® ands.
[Example 4 Given a queryQ = gnw. Strings = “Gnv Corp.”
matchesQ because it satisfies first two conditions and also satisfies
the third condition thagnv in s has inter-word neighborhood rela-
tionship which meang||n, n|lv. While stringt = “GetMyNvidia”
doesn’t match matckp, because although it also satisfies the first
two conditions, the three letteggw appearing in doesn’t have any
of the two relationships.

3.3 Abbreviated Query

Autocompletion abbreviated query runs as follows: When user is-
sues a query, with every single stroke of the query string, the string
typed in so far will be sent as the input of the index. After that, our
index return objects that match the query.
3.4 Top-k Abbreviated Query
Top-k query runs as follows: When user issues a query, with ev-

tokenizer to process every single string and identify every singleery single stroke of the query string, the string typed in so far will

word in this string and change every word’s first letter into upper-

case and then concatenate them together again.
[Example 1 For a string “getnextvalue”, we first identify ev-

"o

ery single word “get”,

” o,

next”, “value”, transform them into “Get”,
“Next”, “Value” and at last concatenate them as “GetNextValue”.
3.1.2 Intra-word Neighborhood Relationship

[Definition 1] (Intra-word Neighborhood Relationship In a sin-

be sent as the input of the index. And then, our index will return
the most relevark objects that match the query according to textual
popularity.

3.5 Problem Statement

3.5.1 Abbreviated Query

Based on above specification, we give the abbreviated query au-
tocompletion problem formulation.

gle word from a string, every adjacent character has the intra—wonﬁDeflnltlon 3] (abbreviated query autocompletion Given a query

neighborhood relationship. When two charactersnd b has the
intra-word neighborhood relationship, we denote itis
[Example 2 In a string “GetNextValue”, we take the wof@et
and we haveGle, gt. Similarly, in Nextwe haveN|e, €x, xt, in
Value we haveV|a, all, l|u, ule.

3.1.3 Inter-word Neighborhood Relationship

[Definition 2] (Inter-word neighborhood Relationship In two ad-

jacent single words from a string, previous word’s every characte
has the intra-word neighborhood relationship with the last word’sR =

uppercase letter. When two charactarandb has the intra-word
neighborhood relationship, we denote itzélb.
[Example 3 In a string “GetNextValue”, we take the wof@et
andNext so we haves||N, €N, t[|N. Similarly, in NextandValue
we haveN||V, €|V, x|V, t||V.

3.2 Match an Abbreviated Query

Given a abbreviated quel®, and a data string, whenQ and
s satisfy the following three conditionss matchesQ. Whens

matche®, we denote ita® < s.

(1)

Qs a subsequence of

(2) Qs first character is identical witks first character.

(3) Every two adjacent characters@has intra-word neighbor-
hood relationshipr inter-word neighborhood relationship in

S.

Q, a textual databasP = {O,, O, ..., O,},each object consists of
one partO.str, it returns all the object® € D such that each object
in RsatisfiesQ < O.str .

3.5.2 Topk Abbreviated Query

We also give the definition of Top-Query.
[Definition 4] (top«k abbreviated query autocompletion Given a
queryQ, a textual database = {O;,0,, ..., O}, each object con-
§ists of two part®©.strandO.staticscoreit returns the togk objects
D such that each obje€@ € R satisfiedQ < O.str, sorted by
the textual static score.

4. Prefix-network Index

4.1
We introduce our index structure from the classical trie index

Index Structure

showed in Fig. 2. Considering fetching the object results conve-
niently, we attach an object id intervad, p] on each trie node. If
we traverse the trie and find a trie node, we can directly use the ob-
jectid range &, b] to collect the results by random access instead of
traversing the subtree recursively.

4.1.1 Merge Uppercase Node

Although the query match is non-sensitive to uppercase character,
we can deem uppercase character as a beginning of a single word
and do the searchfificiently. Here, for convenience, we call the
node attached with uppercase charatippercase Node As we
have highlighted using the red circle in Fig. 2, we decide to merge



the uppercase nodes if they share the same uppercase lowest com-

mon ancestor. For example, in Fig. 2, the upside red circle high= -

. i Algorithm 1: BumpPrerixNETwORKINDEX (T, D)
lights five uppercase nodég P, T, N, N, and then merge the three InpUt. T 1S & network nodeD is a textual dataset
N node into one node. This will disorganize the original trie order; + _ rootNode

and regenerate a new subtree. Then we can find that downside redor each strings € D do

circle highlights 6 uppercase nod€sV,V, O, V,V, but the second 3 L INSERTSTRING(T, S)

V node doesn't share the same uppercase lowest common ances}or g averseBrrinpicator Sorrcut(T)
with the others so we just merge the othe¥ Jodes. Note that 5 TraverseSussuMEINDICATORSHORTCUT(T)
we also merge the object id intervals to keep the intervals updated.

After merge all the qualified uppercase nodes, we obtain a prefix-
network described in Fig. 3.

4.1.2 Bit Array Indicator

To deal with string matched by satisfying inter-word neighbor-

Algorithm 2: INSerTSTRING(S, T)
Input: sis a single string with a unique integer itl,is a network node
hood relationship, we attach a bit array indicator on each network node— T

node to judge if any uppercase nodes appear under the current net-UppareNopelNTErvALANDScORE(NOdES D, S.SCOrQ
work node and help us to locate such uppercase ndtiefestly. In 3 for each charactecharin sdo

if charis UpperCasehen
node.BitIndicator.add(char)
FoundOrNot« nodeshortcutfind(char)
if FoundOrNot= NotFoundthen

8 L nodeshortcufchar] «— NewNode

Fig. 3, we use a character list in orange to represent what uppercaée
nodes will appear under current network node, but use bit array in
implementation to save space. In Fig. 3, when we locate on nodé
G in the first layer, the character list, P, T shows that there are

3 uppercase nodes under currénhode. Then we locate 0B’s node« nodeshortcufchar

child nodei, the character lisN shows that there’s only one up- o else

per case nod&l under thisi node because we only have one stringll
GitNextValuen this dataset.

FoundOrNot«— nodechildren find(char)

12 if FoundOrNot= NotFoundthen
[1,13] ¢’\ 13 NewNodeshortcut— nodeshortcut
ma_ =" y %l 14 nodechildrer{char] < NewNode

eyl a [4.101G qﬁl R
4.8] Too—19,91 1110,10]
ol e

“, i rln 15 node« nodechildrer{char]
| [neT] Nl | N
“1 ¢ .71 B8 tot v 16 UppatENoDEINTERVALANDScORE(NOdES.id,S.SCOr
N 4,619,101\ _
‘ I/ ‘ 7 T—1al X
o B4 @ v ¢ T
X X e m X
1 > 6 ¢ ‘
1~ 23] 44 _~sepe0Y ¢ [11,1g/t\[1\2,13]
© D @ v - -
| A~ A~ Y —Lo1] ? /V\ Algorithm 3: UppareNopelNTERVALANDSCORE(T, S.id, S.SCOr
h a (e'h a (e (a (f h a e — — —— -
| L C T TN | L Input: T is a network nodes.id is a string integer id
a I (c'a » ©0 @ a I e
| | T | Sl | | i 1 node—T
r u t T u t u a r u t
D e oA T Lo 2 if node.minid= -1 then
[ e o e y e o
J i . l l . l l i : 3 L nodeminid « sid
o, 0, 0,0, O, O, O O, o, O, 0, O, 4 if node.maxicd= -1 then
5 nodemaxid « s.id
Figure 3 Prefix-network Index with Bit Array Indicator 6 | node.interval.pushbadkitervalTriplet < sid, sid, s.score>)
4.1.3 Build the Index 7 if sid > maxidthen
Below we give the algorithm of building the prefix-network in- & | if sid=maxid1then
dex 9 node.interval.lastPair.upperbounsl
10 if s.score> node.interval.lastPair.scordhen
e Algorithm 1 shows a whole procedure of building the prefix-** L node.interval.lastPair.score s.score
network index. Line 2—3 shows that we insert the whole dataset else
iteratively, but note that we have sorted the dataset strings i L node.interval.pushbadkiterval T riplet < s.id, s.id, s.score>)
alphabetical order in advance to make it convenient for the iny, maxid < s.id

terval update. In line 4 we complete calculating the bit array,. ,oqemaxscore— MAX(nodemaxscores score

indicator recursively.



e Algorithm 2 shows how to insert a string object into our index. AIGOrthm 5; TRAVERSEBITINDICATORCHILDREN(T)

In line 2 we first update the root node interval. As uppercas€ |nput: T is a network node

character is special so when a uppercase character comes injnode— T

we begins to build the bit array indicator on each parent node2 if node.children= NULL then

of uppercase node in line 5. In line 6, we first create a map® t return

calledshortcutonly on uppercase node as an implicit “short- 4 for each subnode in node.childrelo

cut” to directly link to the below uppercase node féiigent 5 L TraverseBrrinpicatorCrroren(subnodg

search. Note that lowercase node only store a pointer as a cogly | M°de-Bitindicator = subnode.Bitindicator

of its nearest or lowest ancestor uppercase node. Line 8 shows

that if we fail to find an existing node, we will insert a node.

- ._shortcut. If it successfully matches, we call this kind of néa¢ive
Then, in line 9 we update current node to keep the loop going.

. . . . Node When the search traverses the network and access a node, it
In line 11 we begin to insert the non-special lowercase node

will see the bit array indicator to judge if the short cut really has the
using a map called “children”. In line 14 if we fail to find an Y Jucg y

- . - . uery character. If the short cut really has the query character, we
existing child node, we will insert a new one. And in line 15 query y query

. . o can use the short cut téfieiently set the corresponding node active.
we update the node to keep the loop going. Finally, in line 16 y P 9

. The active nodes in our prefix-network index will continue expand-
we update the interval for every node we have accessed. ) ) ) )
ing until a query ends or the query fails to find at least one match
e Algorithm 3 shows how to update each node’s string id intervalcharacter in its children or short cut nodes. After the query ends,
when inserting strings. In line 2 and line 4 we set the intervalif there are nodes remaining active, we will fetch the string results
minimum and maximum value to both -1 to represent the in-using these active nodes. As each active node has a path from the
terval is empty. In line 6 shows that if we encounter an emptyroot and every nodes it had accessed to current node, we can uti-
interval we can insert the string id into the interval immedi- lize the intervals store in these nodes to obtain the results. Note that
ately. Line 7—13 shows that if current string id is adjacent withwe only need some of these intervals, more precisely, we only need
current maximum id, we can simply plus 1 in the last the inter-those nodes who is the most far from its lowest ancestors. Then
val’s upper bound, otherwise we will insert a new standalonewe can intersect these nodes’ intervals to obtain the final intervals.
interval into the interval vector. Last, we update the maximumWe give detailed algorithm in Algo 6. We also devise a merge-sort-
id in line 14. like algorithmIntersecTINTERVAL tO €efficiently intersect the interval
) ) segments, we omit the detailslefrersectIntervAL due to the paper
e Algorithm 4 and algorithm 5 show how to complete calculat- . ) )
) ) o i ) space limit. After that, we can simply fetch those results strings by
ing each node’s bit array indicator recursively. In algorithm 5

) ] ) _random access. Figure. 4 gives an example of abbreviated query
line 6, we do union operation between a parent node and its

. n ] ] search.
each child to finish the bit array calculation.
o
|
e Algorithm TravErRSESUBSUMEINDICATORSHORTCUT in algo 1 is 4.10@
|
similar with Algo 4, we omit it in details due to the paper space [4.8] 6‘1
limit. T
[4,6](9,10] (N
\
o [4619.101@ [\5/'5][9'101
Algorithm 4: TraverseBrrInpicator SHorRTCUT(T) ] )‘(
Input: T is a network node | l @ @ [6.6]
1 node— T ? ! :
2 if node.shortcut NULL then f u }
3 t return l e o
|
4 for each subnode in node.shortald l :
o, o o}

59,10

=

5 TravERSEBITINDICATOR SHORTCUT(SUDNOd
TraverseBiITInpicaTor CHILDREN(SUDNO§

Figure 4 Search with Abbreviation Query
[Example 5§ See Fig. 4, given a abbreviation query “geneve”. So
4.2 Search with Abbreviation Query after we traverse the prefix-network index, we can obtain an ac-
Given an abbreviation query, we will traverse the prefix-networktive nodee3 under the node&/. We use color purple to repre-

index from the root node first. We try to match each character in thgent those node it has gone through. The path it goes through is
query with each character in current network node’s children ands — e1 — N — e2 — V — €3. Their intervals are:



G:[4.10] Algorithm 6: SearRcHWITHABBREVIATIONQUERY(S, T)

* el:[48] Input: sis an abbreviation query, is the root network node
e N:[4,6][9,10] Output: NodeS ets the final active nodeset

e €2:[4,6][9,10] 1 NodeSet— NULL

e V:[5,6][9,10] 2 bNodeSet- NULL

3 NodeS epusHT)
4 for each charactecharin sdo

o €3:[6,6]

, respectively. As nodel is absolutely subsumed by its par&@ht )
for eachnodein NodeS etlo

we don’t need to intersect nod&s interval. Similarly, we only ChildrenFoundOrNok— nodechildren find(char)

need to intersect noded, €2, €3's 3 intervals which the resultis S hortcutFoundOrNot— nodeshortcutfind(char)
[4,8]N[4,6][9,10]N[6, 6] = [6, 6]. [6,6] only contaings whichis ¢ BitIndicatorFoundOrNot— nodebitindicator. find(char)
GetNextVectoand it's the only match of abbreviation query “gen- o S ublndicatorFoundOrNot-

eve’. nodesubsumelndicatofind(char)

if ChildrenFoundOrNot NotFound AND
BitIndicatorFoundOrNot= NotFoundthen

4.2.1 Subsumption Relationship-based Intersection Optimiza®®
tion

. . o ) . 11 L continue
We propose a technique which optimizes the intersection cost by
. . . L . ] 12 else
utilizing the subsumption relationship in this prefix-work. We show o
) o . . .13 if ChildrenFoundOrNot Foundthen
the algorithm below. We also show the basic idea with an illustrative . .
14 Foundhistory < nodehistory
example. 15 bNodeS epust{nodechildrerichar])
[Example @ Consider the patfs el - N - 2-V - €3 in exam- 16 if BitindicatorFoundOrNot= SCFound AND
ple 5. Notice that the node2’s in this path interval is [4,6][9,10], S hortcutFoundOrNot Foundthen
and the interval of nod¥ is [5,6][9,10], and the interval of node i, S CFounchistory « nodehistory
e3 is [6,6]. As the node3 has parent-child relationship with node 1s if SublIndicatorFoundOrNot NotS ubsumthen
V, naturally the interval of node3 C V. However we observe that 19 midIntersect— nodelntersectinterals
there’s also nod® C e2. So we can deduce that the naggec 2.  2° (nodeinterval, S CFounchistory)
. - . . . if midint tis EMPTYh
This means when we calculate the intersectioglod2 €3 in exam- - i midintersectis en
. . . 22 L node.history.clear()
ple 5, itis not necessary to intersect n@2és interval anymore. As
|
a result, we only need to calculate 8 n [6, 6]. % ese ) ]
) ] 24 L S CFoundhistory « midIntersect
For any uppercase node whose interval is completely subsumed L
by its ancestor node, we mark “subsumed” on that ancestor node’s | bNodeSepush{nodeshortcufchar])
link to this uppercase node. Actually, we only need to mark thoses | node.history.clear()

uppercase nodes who appear in the bit array indicator because or217ly NodeS et NULL

those who show up in the array indicator can be searched and bg- | o eachnodein bNodeS etio
come active. We do this by invOKin§RAVERSESUBSUMEINDICATOR 29 t NodeS epushinodd

showed in Algo. 1. )
30 for each acnode in nodeSeo

4.2.2 Subsumption Relationship-based Duplicate-removal Opé1 finallntersecte
timization activenodelntersectinteral(ac.interval, acnodehistory)

We can also utilize the subsumption relationship to help to res; acnodehistory « finalntersect

move those possible duplicates. We also show the basic idea With return nodes et

an illustrative example.

[Example 1 See Fig. 3, given an abbreviation query “get”. After
we traverse the prefix-network index, we can obtain an active nodéXPands into two active nodes, in this example, we will check the
t from pathG — e—t and an active nod€ from pathG —e—T. The nodet andT subsumption relationship when active natesplits”
second active node is obtained because when search goes througl these two active nodes. We can find that nédenodet, and if

G - e, nodee's bit array indicator shows that there’s a T below so duery ends here, we will abandon active nddt do the duplicate
the nodeT also become active. We observe that these active nodegemoval.

intervals are [4,8] and [8,8] respectively. As we need to fetch allAPout the “active node split”, we give the definition below.

these active nodes results, we dogu [8,8] = [4,8]. As node [Definition 5] (Active Node Split  Given an active node, when

T € nodet, the interval of noddl becomes completely duplicate query’s next charactes comes in,n finds the charactes matched

in ;his Unton operation. To solve this problem, we need to checkboth in its children and shortcut map, we call this active nodplit

the subsumption relationship especially when a single active nodd8to two active nodes.



Whenever an active node split into two active nodes, we begirtan easily prune this node or remaining interval segments to avoid
to trace these two nodes and check if they have subsumption relannecessary operations.
tionship, if they have and query ends here, we can abandon the sub-Algorithm 7 shows the details of topabbreviation query search.
sumed node to remove the duplicate. If they have subsumption re- .

) ] ) 5. Experiment
lationship but the query doesn’t end, we will trace these two nodes’
expansion as query’s next character comes in, if these two nodes5.1 Experimental Setting
keep active until query ends and: In this section, we will give our experimental results to show the

) performance and compare it with other works showed below.
e These two nodes only expand through children map.

_ ) (1) Classical trie. Classical trie is used in text retrieval affd e
¢ Upside node always subsumes the downside node’s lowest up- . . . .
cient autocompletion these years. We donote it as CT for sim-

percase ancestor. -
plicity.

We can remove the downside node safely when query ends. ) . .
y query (2) PNI. With the novel index structure and fetching method we
We give our search algorithm and a running example below.

proposed, we will give the comparison between the other work,
4.3 Search with Topk Abbreviation Query

and we denote it as PNI for simplicity in our experiment.

Algorithm 7: FercuTork ResuLrswitHAcTivENobeSET(NodeS et The experiments were implemented using a PC with Intel Xeon

Input: NodeS ets an active node set CPU E5620 (2.40GHz), 32GB memory, Ubuntul4. All the algo-
Output: Resultss the final topk results

rithm are implemented in €+ and are run as the in-memory index.
5.1.1 Datasets
We use a large dataset and show the statistics below. Dataset

1i<0
2 TopkPriorityQueue— NULL
3 for each active nodaodein NodeS etlo

4 L TopkPriorityQueue.pushdg Table 2 Statistics of the Dataset

5 while i < k AND TopkPriorityQueue is not empdp Dataset DBLP

6 topElem« T opkPriorityQueuepop() number of objects 9316195

7 if topElemis a nodethen Dataset Size 135MB

8 ExpandtopEleminto the interval segments Max Text Length 12

9 for each interval segmersigy in topElemdo Average Text Length  9.40

10 L TopkPriorityQueue.puskéy)

n if;opE|emis ainterval segmerthen DBLP contains bibliography records in Computer Science, and we
12 for eachstringob jectlocate intopElemdo extract 9.3 million worldwide author names from the records.

13 L TopkPriorityQueue.puskfringob jec) 5.1.2 Queryset

u if;opEIemis a stringobjecthen We generate queries by randomly selecting 1000 strings and gen-
15 Results.push¢pElen) erate the abbreviation query for each string. We ignore all the spaces
16 i++ in multikeyword and contecate them into one single string. We re-

move meaningless symbols and only remain the alphabetic letters.
7 return Results

-

In our experiment, we mainly measure:

N . . (1) Abbreviation Query Response Time. It represents the whole
Topk query processing is quite fiiérent from the non-toj-

time to execute a abbreviation query and fetch all the qualified

query and #iciently fetch the togk is even an challenging work. i
results.

To fetch the most relevant tdpdata string, we need to rank the
results by their static score. In our index, we store a upper bound2) Topk Abbreviation Query Response Time. It represents the

static score for every node’s every interval segment (e.g. [4,6]:1.0  whole time to execute a topabbreviation query and fetch the
;[9,10]:0.1.) in the prefix-network and use the early termination most relevank qualified results.

technique to fetch the resultfieiently. Also, as showed in alg. 3,

5.2 Abbreviated R Ti
we store an overall upper bound score on each node (e.g. for node reviated Query Response Time

. . In Fig. 5 we show the abbreviated query response time usin
N, we store a maximum score 1.0).That means, we will fetch the 9 query P 9

. . . . dataset DBLP. W th tri fix length f l1to8
results from the highest static score node’s highest interval segmen’fz1 ase © vary the query sfring prefixfength from 2 7o

S . . to see the runtime. When prefix length is longer, CT method be-
which is considered the most relevant. We use a priority queue to P 9 9

. , comes much slower while our PNI method becomes faster. This is
rank the topk results and if any node’s upper bound score, or any

, . . because CT method costs too much on iteratively search the whole
node’s any interval segment score is lower thankitle score, we

trie while our PNI almost has no time cost on search of index but



mainly on fetch results phase. When prefix length becomes longer,
qualified strings will reduce drastically and our PNI method will be-
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times faster than the CT method respectively.
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Figure 5 DBLP, Query Response Time 6]
5.3 Top-k Abbreviated Query Response Time
In Fig. 6 we show the tof-abbreviated query response time. We
setk = 5 and vary the query string prefix length from 1 to 8 to see 71
the results. Similarly, when prefix length is longer, CT method be- [g]
comes much slower while our PNI method becomes faster after a
wave when prefix length equals 2. CT method still costs too much (9]
on trie traversal search while our PNl is fast at index search and also
has decent performance of téresults pruning. Additionally, we 1]
also record the index size of both methods. CT costs 5.3Gb while
PNI costs 2.27 Gb whek = 5. CT also doesn'’t support a dynamic [11]
k value become it needs to materialize a kopank list on each node

of the trie which will introduce prohibitive memory cost under a

largek value. Compared with that, our PNI supports a dynaknic [12]
and the index size will keep constant wHeahanges.
[13]
—4A— PNI-topk|
(14]
14
ié’, 0.1
[}
E
=
0.014
0.001 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9

Prefix Length

Figure 6 DBLP, Topk Query Response Time

6. Conclusion

In this paper, we propose the definition of abbreviation query au-
tocompletion. Then we design afffieient index structure along
with a search algorithm and a tdgfetch algorithm. After that we
give a simple evaluation using a large dataset.
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