
DEIM Forum 2017 G4-4

Efficient Query Autocompletion for Abbreviated Queries

Sheng HU�, Chuan XIAO��, and Yoshiharu ISHIKAWA�

� Graduate School of Information Science, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464–8601 Japan

�� Institute for Advanced Research, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464–8601 Japan

E-mail: �hu@db.ss.is.nagoya-u.ac.jp,��chuanx@nagoya-u.ac.jp,���ishikawa@is.nagoya-u.ac.jp

Abstract In modern search engines applications, query autocompletion is a useful feature which can save many keystrokes

from inputting the entire query. As the autocompletion features of search engines have become more and more popular,

many variations of query autocompletion appear in various scenarios, e.g. error-tolerant autocompletion and common phrase

autocompletion. In this paper, we propose a novel autocompletion paradigm calledQuery Autocompletion for Abbreviated

Queries, and propose a prefix-network based index to solve this issue efficiently. We conduct some experiments with classical

trie-based method using a large dataset. Experiments show that our method outperformed the classical method.

Key words Query autocompletion, prefix-network, text database search.

1. Introduction

Query autocompletionhas become a useful feature and been stud-

ied for a long time since the appearance of search engines. As this

feature can save many key strokes from inputting the entire query, it

has been considered a standard function of search engines. Besides

traditional text search engines, query autocompletion also has wide

application domains including common shells, integrated devel-

opment environments (IDEs) and special text abbreviation search.

Also, as query autocompletion usually needs to response the in-

coming query in a very short time and suffer from heavy query

throughput, query autocompletion on modern databases need to be

more efficient to improve the user’s experience. An autocompletion

query often returns all the objects begins with the textual prefix.

More useful scenarios are, users want to search for the most related

objects, and then this issue changes into the autocompletion top-k

query, which returns objects after calculating and ranking objects

according to their textual popularities.

Autocompletion has become a standard feature these years. This

important feature can return the search results when user is typing

the partial keywords letter by letter and accordingly pop a pull-down

list to show the most intended items. After that user just need choose

the correct entry to save the tedious inputting time.

Figure 1 A Motivating Example

In this paper, we propose a novel query autocompletion features

so that users may input queries like acronyms or abbreviation in-

stead of letter by letter. We give an motivating example in Fig. 1.

For example, in IDE, users may type “GNV” to get the function

“GetNextValue()”. We call this kind of problemAbbreviated Query

Autocompletion. This problem is quite challenging because cur-

rently there’s no approach to solve it very well. The most similar

approach is to model it using common subsequence techniques, but

we find that common subsequence model cannot solve it efficiently

because we will not consider every subsequence like “NV” or “GV”

can get the function “GetNextValue()”. To model this novel query

more suitably, we propose a novel problem definition to define “Ab-

breviated Query Autocompletion”.

Additionally, it is also very hard to answer Abbreviated Query ef-

ficiently using existing techniques. One approach is to conduct the

search on a prefix trie, but for every character, it needs do the ex-

haustive search throughout current subtree recursively. This method

will result in extremely expensive computation when a query con-

tains too many characters.

To deal with this problem, we propose a prefix-network index

structure called PNI. It transforms a trie into a prefix-network by

merging trie nodes which share the same special characters. It also

attaches a unique bit array as an indicator on each network node

to do efficient pruning when traverse the network. In search phase,

the given query traverse the prefix-network from the root node and

check the bit array indicator to decide if stop traversing. We also

devise an efficient result fetching algorithm to fetch the results by

doing interval intersection. Besides that, we also utilize the net-

work’s nodes subsumption properties to speed up the result fetching

time and duplicate-removal time.

In this paper we mainly study the autocompletion of abbreviation



query and then extend our index to support processing top-k query.

Figure 2 Merge Uppercase Node

Our main contributions are summarized as follows.

（1） Propose a novel query autocompletion feature Abbreviation

Query and give the problem definition.

（2） Propose a novel prefix-network index PNI to deal with the

Abbreviation Query efficiently.

（3） Propose an efficient results fetching method which can fetch

the results by intersecting intervals.

（4） Devise a method to speedup the result fetching time and

duplicate-removal time based on network nodes subsumption

relationships.

（5） A simple experiment has be conducted to compare with ex-

isting method and the results show our method outperforms the

classical one.

The rest of our paper is organized as follows. In section 2., we show

some related works. In section 3., we will give the formal problem

definition. In section 4., we will give the fundamental index struc-

ture called PNI and show our efficient search and result fetching

algorithm. In section 5., we use a simple experiment to verify that

our algorithm outperforms the classical method.

2. Related Work

2. 1 Trie-based Autocompletion

In order to obtain the strings with the same prefix efficiently, trie-

based index becomes very popular and is adopted as the most effi-

cient way to implement autocompletion among the current research

works. Figure. 2 shows a standard trie built based on data in Table 1.

2. 1. 1 Trie-based Text Search

Efficient string prefix search based on trie index was first pro-

posed in Baeza-Yates et al.’s work [1] in 1996. In his work, he also

proposed a patricia tree approach to save the index space. After that,

community of information retrieval begins to focus on autocomple-

tion using trie index. A large amount of studies [2], [11], [12] have

been done to improve the autocompletion queries’ qualities in the

past decades. Besides that, some works [8], [9] focus on reducing

the index size by various compression techniques in order to fit the

index into server’s main memory. The basic index structure used in

these works is the classical trie structure showed in Fig.??. How-

ever, these works mainly focus on improving the autocompletion re-

sults qualities by ranking and calculate relevances carefully instead

of focusing on search efficiency.

2. 1. 2 Error-Tolerant Query Autocompletion

Error-Tolerant Autocompletion (ETA) [6] studied the problem

that when a user issues a partial query which contains some typos,

the search engine can still identify the intended query and give the

correct answers. META [6] put forward by Deng et al. is consid-

ered the state-of-the-art work currently. In META, they proposed a

matching-based framework, which computes the answers based on

matching characters between queries and data efficiently. Besides

that, some works [3], [4], [10], [13], [14] also solve the ETA prob-

lem using various techniques.

2. 2 Tolerant Retrieval and Wildcard Query

Tolerant Retrieval problem [5] comes from information retrieval

community and has been studied for many years. The query model

of this problem called wildcard query. This means a query such as

n*g*y*, and seeks documents containing any term that includes all

the three characters in sequence, e.g, nagoya, nergy. The * sym-

bol can be replaced by any characters. This kind of query is es-

pecially useful when users are uncertain about how to spell query

term, or want to seek documents containing any of the term. A clas-

sical approach to solve this problem efficiently is to use a special

index called permuterm index [7]. It attaches a special symbol $

after each string and them calculate variants of each string by rotat-

ing the string by one step. And then index all these variants into a

tree-like index to do efficient search.

3. Problem Definition

Below we’ll give our data model and query model.

3. 1 Data Model

SupposeD is a textual database, which consists of a lot of ob-

jects {O1,O2, ...,Oi , ...,On}. Each object is defined as atuple =

{O.id,O.string,O.staticscore}, whereO.id is the object id which

is a unique number,O.string is a single string which represents ob-

ject’s name, andO.staticscoreis the object’s popularity.

In our running example, we use a textual database showed in Ta-

ble. 1 for easier demonstration.



Table 1 Textual DatabaseD

ObjectID String Popularity

O1 ApdNextChar 0.4

O2 ApdNextValue 0.9

O3 ApdNextVector 0.9

O4 GetNextChar 0.7

O5 GetNextValue 1.0

O6 GetNextVector 0.5

O7 GetPrevValue 0.4

O8 GetTimeOfDay 0.1

O9 GitNextValue 0.1

O10 GotNextValue 0.1

O11 RmvNextChar 1.0

O12 RmvNextValue 0.3

O13 RmvNextVector 0.3

3. 1. 1 Token-based Data Preprocessing

We’ll use a tokenizer to do the data preprocessing in order to build

our index more conveniently during subsequent steps. We use the

tokenizer to process every single string and identify every single

word in this string and change every word’s first letter into upper-

case and then concatenate them together again.

［Example 1］ For a string “getnextvalue”, we first identify ev-

ery single word “get”, “next”, “value”, transform them into “Get”,

“Next”, “Value” and at last concatenate them as “GetNextValue”.

3. 1. 2 Intra-word Neighborhood Relationship

［Definition 1］（Intra-word Neighborhood Relationship） In a sin-

gle word from a string, every adjacent character has the intra-word

neighborhood relationship. When two charactersa andb has the

intra-word neighborhood relationship, we denote it asa|b.

［Example 2］ In a string “GetNextValue”, we take the wordGet

and we haveG|e, e|t. Similarly, in Next we haveN|e, e|x, x|t, in

Value, we haveV|a, a|l, l|u, u|e.

3. 1. 3 Inter-word Neighborhood Relationship

［Definition 2］（Inter-word neighborhood Relationship） In two ad-

jacent single words from a string, previous word’s every character

has the intra-word neighborhood relationship with the last word’s

uppercase letter. When two charactersa andb has the intra-word

neighborhood relationship, we denote it asa||b.

［Example 3］ In a string “GetNextValue”, we take the wordGet

andNext, so we haveG||N, e||N, t||N. Similarly, in NextandValue

we haveN||V, e||V, x||V, t||V.

3. 2 Match an Abbreviated Query

Given a abbreviated queryQ, and a data strings, whenQ and

s satisfy the following three conditions,s matchesQ. When s

matchesQ, we denote it asQ ⪯ s.

（1） Q is a subsequence ofs.

（2） Q’s first character is identical withs’s first character.

（3） Every two adjacent characters inQ has intra-word neighbor-

hood relationshipor inter-word neighborhood relationship in

s.

Note that we consider uppercase and lowercase is non-sensitive in

the match betweenQ ands.

［Example 4］ Given a queryQ = gnv. String s = “Gnv Corp.”

matchesQ because it satisfies first two conditions and also satisfies

the third condition thatgnv in s has inter-word neighborhood rela-

tionship which meansg||n, n||v. While string t = “GetMyNvidia”

doesn’t match matchQ, because although it also satisfies the first

two conditions, the three lettersgnv appearing int doesn’t have any

of the two relationships.

3. 3 Abbreviated Query

Autocompletion abbreviated query runs as follows: When user is-

sues a query, with every single stroke of the query string, the string

typed in so far will be sent as the input of the index. After that, our

index return objects that match the query.

3. 4 Top-k Abbreviated Query

Top-k query runs as follows: When user issues a query, with ev-

ery single stroke of the query string, the string typed in so far will

be sent as the input of the index. And then, our index will return

the most relevantk objects that match the query according to textual

popularity.

3. 5 Problem Statement

3. 5. 1 Abbreviated Query

Based on above specification, we give the abbreviated query au-

tocompletion problem formulation.

［Definition 3］（abbreviated query autocompletion） Given a query

Q, a textual databaseD = {O1,O2, ...,On},each object consists of

one partO.str, it returns all the objectsR⊂
=

D such that each object

in RsatisfiesQ ⪯ O.str .

3. 5. 2 Top-k Abbreviated Query

We also give the definition of Top-k Query.

［Definition 4］（top-k abbreviated query autocompletion） Given a

queryQ, a textual databaseD = {O1,O2, ...,On}, each object con-

sists of two partsO.str andO.staticscore, it returns the top-k objects

R ⊂
=

D such that each objectO ∈ R satisfiedQ ⪯ O.str, sorted by

the textual static score.

4. Prefix-network Index

4. 1 Index Structure

We introduce our index structure from the classical trie index

showed in Fig. 2. Considering fetching the object results conve-

niently, we attach an object id interval [a, b] on each trie node. If

we traverse the trie and find a trie node, we can directly use the ob-

ject id range [a,b] to collect the results by random access instead of

traversing the subtree recursively.

4. 1. 1 Merge Uppercase Node

Although the query match is non-sensitive to uppercase character,

we can deem uppercase character as a beginning of a single word

and do the search efficiently. Here, for convenience, we call the

node attached with uppercase characterUppercase Node. As we

have highlighted using the red circle in Fig. 2, we decide to merge



the uppercase nodes if they share the same uppercase lowest com-

mon ancestor. For example, in Fig. 2, the upside red circle high-

lights five uppercase nodesN,P,T,N,N, and then merge the three

N node into one node. This will disorganize the original trie order

and regenerate a new subtree. Then we can find that downside red

circle highlights 6 uppercase nodesC,V,V,O,V,V, but the second

V node doesn’t share the same uppercase lowest common ancestor

with the others so we just merge the other 3V nodes. Note that

we also merge the object id intervals to keep the intervals updated.

After merge all the qualified uppercase nodes, we obtain a prefix-

network described in Fig. 3.

4. 1. 2 Bit Array Indicator

To deal with string matched by satisfying inter-word neighbor-

hood relationship, we attach a bit array indicator on each network

node to judge if any uppercase nodes appear under the current net-

work node and help us to locate such uppercase nodes efficiently. In

Fig. 3, we use a character list in orange to represent what uppercase

nodes will appear under current network node, but use bit array in

implementation to save space. In Fig. 3, when we locate on node

G in the first layer, the character listN,P,T shows that there are

3 uppercase nodes under currentG node. Then we locate onG’s

child nodei, the character listN shows that there’s only one up-

per case nodeN under thisi node because we only have one string

GitNextValuein this dataset.

Figure 3 Prefix-network Index with Bit Array Indicator

4. 1. 3 Build the Index

Below we give the algorithm of building the prefix-network in-

dex.

• Algorithm 1 shows a whole procedure of building the prefix-

network index. Line 2–3 shows that we insert the whole dataset

iteratively, but note that we have sorted the dataset strings in

alphabetical order in advance to make it convenient for the in-

terval update. In line 4 we complete calculating the bit array

indicator recursively.

Algorithm 1: BuildPrefixNetworkIndex(T,D)
Input: T is a network node,D is a textual dataset

1 T ← RootNode

2 for each strings ∈ D do

3 InsertString(T, s)

4 TraverseBitIndicatorShortcut(T)

5 TraverseSubsumeIndicatorShortcut(T)

Algorithm 2: InsertString(s,T)
Input: s is a single string with a unique integer id,T is a network node

1 node← T

2 UpdateNodeIntervalAndScore(node,s.id,s.score)

3 for each characterchar in sdo

4 if char is UpperCasethen

5 node.BitIndicator.add(char)

6 FoundOrNot← node.shortcut. f ind(char)

7 if FoundOrNot= NotFoundthen

8 node.shortcut[char] ← NewNode

9 node← node.shortcut[char]

10 else

11 FoundOrNot← node.children. f ind(char)

12 if FoundOrNot= NotFoundthen

13 NewNode.shortcut← node.shortcut

14 node.children[char] ← NewNode

15 node← node.children[char]

16 UpdateNodeIntervalAndScore(node,s.id,s.score)

Algorithm 3: UpdateNodeIntervalAndScore(T, s.id, s.score)
Input: T is a network node,s.id is a string integer id

1 node← T

2 if node.minid= -1 then

3 node.minid← s.id

4 if node.maxid= -1 then

5 node.maxid← s.id

6 node.interval.pushback(IntervalTriplet < s.id, s.id, s.score>)

7 if s.id > maxidthen

8 if sid= maxid+1 then

9 node.interval.lastPair.upperbound++

10 if s.score> node.interval.lastPair.scorethen

11 node.interval.lastPair.score← s.score

12 else

13 node.interval.pushback(IntervalTriplet < s.id, s.id, s.score>)

14 maxid← s.id

15 node.maxscore← MAX(node.maxscore, s.score)



• Algorithm 2 shows how to insert a string object into our index.

In line 2 we first update the root node interval. As uppercase

character is special so when a uppercase character comes in,

we begins to build the bit array indicator on each parent node

of uppercase node in line 5. In line 6, we first create a map

calledshortcutonly on uppercase node as an implicit “short-

cut” to directly link to the below uppercase node for efficient

search. Note that lowercase node only store a pointer as a copy

of its nearest or lowest ancestor uppercase node. Line 8 shows

that if we fail to find an existing node, we will insert a node.

Then, in line 9 we update current node to keep the loop going.

In line 11 we begin to insert the non-special lowercase node

using a map called “children”. In line 14 if we fail to find an

existing child node, we will insert a new one. And in line 15

we update the node to keep the loop going. Finally, in line 16

we update the interval for every node we have accessed.

• Algorithm 3 shows how to update each node’s string id interval

when inserting strings. In line 2 and line 4 we set the interval

minimum and maximum value to both -1 to represent the in-

terval is empty. In line 6 shows that if we encounter an empty

interval we can insert the string id into the interval immedi-

ately. Line 7–13 shows that if current string id is adjacent with

current maximum id, we can simply plus 1 in the last the inter-

val’s upper bound, otherwise we will insert a new standalone

interval into the interval vector. Last, we update the maximum

id in line 14.

• Algorithm 4 and algorithm 5 show how to complete calculat-

ing each node’s bit array indicator recursively. In algorithm 5

line 6, we do union operation between a parent node and its

each child to finish the bit array calculation.

• Algorithm TraverseSubsumeIndicatorShortcut in algo 1 is

similar with Algo 4, we omit it in details due to the paper space

limit.

Algorithm 4: TraverseBitIndicatorShortcut(T)
Input: T is a network node

1 node← T

2 if node.shortcut= NULL then

3 return

4 for each subnode in node.shortcutdo

5 TraverseBitIndicatorShortCut(subnode)

6 TraverseBitIndicatorChildren(subnode)

4. 2 Search with Abbreviation Query

Given an abbreviation query, we will traverse the prefix-network

index from the root node first. We try to match each character in the

query with each character in current network node’s children and

Algorithm 5: TraverseBitIndicatorChildren(T)
Input: T is a network node

1 node← T

2 if node.children= NULL then

3 return

4 for each subnode in node.childrendo

5 TraverseBitIndicatorChildren(subnode)

6 node.BitIndicator| = subnode.BitIndicator

shortcut. If it successfully matches, we call this kind of nodeActive

Node. When the search traverses the network and access a node, it

will see the bit array indicator to judge if the short cut really has the

query character. If the short cut really has the query character, we

can use the short cut to efficiently set the corresponding node active.

The active nodes in our prefix-network index will continue expand-

ing until a query ends or the query fails to find at least one match

character in its children or short cut nodes. After the query ends,

if there are nodes remaining active, we will fetch the string results

using these active nodes. As each active node has a path from the

root and every nodes it had accessed to current node, we can uti-

lize the intervals store in these nodes to obtain the results. Note that

we only need some of these intervals, more precisely, we only need

those nodes who is the most far from its lowest ancestors. Then

we can intersect these nodes’ intervals to obtain the final intervals.

We give detailed algorithm in Algo 6. We also devise a merge-sort-

like algorithmIntersectInterval to efficiently intersect the interval

segments, we omit the details ofIntersectInterval due to the paper

space limit. After that, we can simply fetch those results strings by

random access. Figure. 4 gives an example of abbreviated query

search.

Figure 4 Search with Abbreviation Query

［Example 5］ See Fig. 4, given a abbreviation query “geneve”. So

after we traverse the prefix-network index, we can obtain an ac-

tive nodee3 under the nodeV. We use color purple to repre-

sent those node it has gone through. The path it goes through is

G − e1− N − e2− V − e3. Their intervals are:



• G : [4,10]

• e1 : [4,8]

• N : [4, 6][9,10]

• e2 : [4,6][9, 10]

• V : [5, 6][9, 10]

• e3 : [6,6]

, respectively. As nodee1 is absolutely subsumed by its parentG,

we don’t need to intersect nodeG’s interval. Similarly, we only

need to intersect nodese1, e2, e3’s 3 intervals which the result is

[4, 8]∩ [4,6][9,10]∩ [6, 6] = [6, 6]. [6,6] only containsO6 which is

GetNextVectorand it’s the only match of abbreviation query “gen-

eve”.

4. 2. 1 Subsumption Relationship-based Intersection Optimiza-

tion

We propose a technique which optimizes the intersection cost by

utilizing the subsumption relationship in this prefix-work. We show

the algorithm below. We also show the basic idea with an illustrative

example.

［Example 6］ Consider the pathG−e1−N−e2−V−e3 in exam-

ple 5. Notice that the nodee2’s in this path interval is [4,6][9,10],

and the interval of nodeV is [5,6][9,10], and the interval of node

e3 is [6,6]. As the nodee3 has parent-child relationship with node

V, naturally the interval of nodee3 ⊂
=

V. However we observe that

there’s also nodeV ⊂
=

e2. So we can deduce that the nodee3 ⊂
=

e2.

This means when we calculate the intersection ofe1 e2 e3 in exam-

ple 5, it is not necessary to intersect nodee2’s interval anymore. As

a result, we only need to calculate [4,8] ∩ [6, 6].

For any uppercase node whose interval is completely subsumed

by its ancestor node, we mark “subsumed” on that ancestor node’s

link to this uppercase node. Actually, we only need to mark those

uppercase nodes who appear in the bit array indicator because only

those who show up in the array indicator can be searched and be-

come active. We do this by invokingTraverseSubsumeIndicator

showed in Algo. 1.

4. 2. 2 Subsumption Relationship-based Duplicate-removal Op-

timization

We can also utilize the subsumption relationship to help to re-

move those possible duplicates. We also show the basic idea with

an illustrative example.

［Example 7］ See Fig. 3, given an abbreviation query “get”. After

we traverse the prefix-network index, we can obtain an active node

t from pathG− e− t and an active nodeT from pathG− e−T. The

second active node is obtained because when search goes through

G − e, nodee’s bit array indicator shows that there’s a T below so

the nodeT also become active. We observe that these active nodes’

intervals are [4,8] and [8,8] respectively. As we need to fetch all

these active nodes results, we do [4, 8] ∪ [8,8] = [4,8]. As node

T ⊂
=

nodet, the interval of nodeT becomes completely duplicate

in this Union operation. To solve this problem, we need to check

the subsumption relationship especially when a single active nodes

Algorithm 6: SearchwithAbbreviationQuery(s,T)
Input: s is an abbreviation query,T is the root network node

Output: NodeS etis the final active nodeset

1 NodeS et← NULL

2 bNodeS et← NULL

3 NodeS et.push(T)

4 for each characterchar in sdo

5 for eachnodein NodeS etdo

6 ChildrenFoundOrNot← node.children. f ind(char)

7 S hortcutFoundOrNot← node.shortcut. f ind(char)

8 BitIndicatorFoundOrNot← node.bitIndicator. f ind(char)

9 S ubIndicatorFoundOrNot←
node.subsumeIndicator. f ind(char)

10 if ChildrenFoundOrNot= NotFound AND

BitIndicatorFoundOrNot= NotFoundthen

11 continue

12 else

13 if ChildrenFoundOrNot= Foundthen

14 Found.history← node.history

15 bNodeS et.push(node.children[char])

16 if BitIndicatorFoundOrNot= SCFound AND

S hortcutFoundOrNot= Foundthen

17 SCFound.history← node.history

18 if S ubIndicatorFoundOrNot= NotS ubsumethen

19 midIntersect← node.IntersectIntervals

20 (node.interval,SCFound.history)

21 if midIntersect is EMPTYthen

22 node.history.clear()

23 else

24 SCFound.history← midIntersect

25 bNodeS et.push(node.shortcut[char])

26 node.history.clear()

27 NodeS et← NULL

28 for eachnodein bNodeS etdo

29 NodeS et.push(node)

30 for each acnode in nodeSetdo

31 f inalIntersect←
activenode.IntersectInterval(ac.interval, acnode.history)

32 acnode.history← f inaIntersect

33 return nodeS et

expands into two active nodes, in this example, we will check the

nodet andT subsumption relationship when active nodee “splits”

into these two active nodes. We can find that nodeT ⊂
=

nodet, and if

query ends here, we will abandon active nodeT to do the duplicate

removal.

About the “active node split”, we give the definition below.

［Definition 5］（Active Node Split） Given an active noden, when

query’s next characters comes in,n finds the characters matched

both in its children and shortcut map, we call this active noden split

into two active nodes.



Whenever an active node split into two active nodes, we begin

to trace these two nodes and check if they have subsumption rela-

tionship, if they have and query ends here, we can abandon the sub-

sumed node to remove the duplicate. If they have subsumption re-

lationship but the query doesn’t end, we will trace these two nodes’

expansion as query’s next character comes in, if these two nodes

keep active until query ends and:

• These two nodes only expand through children map.

• Upside node always subsumes the downside node’s lowest up-

percase ancestor.

We can remove the downside node safely when query ends.

We give our search algorithm and a running example below.

4. 3 Search with Top-k Abbreviation Query

Algorithm 7: FetchTopkResultswithActiveNodeSet(NodeS et)
Input: NodeS etis an active node set

Output: Resultsis the final topk results

1 i ← 0

2 TopkPriorityQueue← NULL

3 for each active nodenodein NodeS etdo

4 TopkPriorityQueue.push(node)

5 while i < k AND TopkPriorityQueue is not emptydo

6 topElem← TopkPriorityQueue.pop()

7 if topElemis a nodethen

8 ExpandtopEleminto the interval segments

9 for each interval segmentseg in topElemdo

10 TopkPriorityQueue.push(seg)

11 if topElemis a interval segmentthen

12 for eachstringob jectlocate intopElemdo

13 TopkPriorityQueue.push(stringob ject)

14 if topElemis a stringobjectthen

15 Results.push(topElem)

16 i++

17 return Results

Top-k query processing is quite different from the non-top-k

query and efficiently fetch the top-k is even an challenging work.

To fetch the most relevant top-k data string, we need to rank the

results by their static score. In our index, we store a upper bound

static score for every node’s every interval segment (e.g. [4,6]:1.0

;[9,10]:0.1.) in the prefix-network and use the early termination

technique to fetch the results efficiently. Also, as showed in alg. 3,

we store an overall upper bound score on each node (e.g. for node

N, we store a maximum score 1.0).That means, we will fetch the

results from the highest static score node’s highest interval segment

which is considered the most relevant. We use a priority queue to

rank the top-k results and if any node’s upper bound score, or any

node’s any interval segment score is lower than thek-th score, we

can easily prune this node or remaining interval segments to avoid

unnecessary operations.

Algorithm 7 shows the details of top-k abbreviation query search.

5. Experiment

5. 1 Experimental Setting

In this section, we will give our experimental results to show the

performance and compare it with other works showed below.

（1） Classical trie. Classical trie is used in text retrieval and effi-

cient autocompletion these years. We donote it as CT for sim-

plicity.

（2） PNI. With the novel index structure and fetching method we

proposed, we will give the comparison between the other work,

and we denote it as PNI for simplicity in our experiment.

The experiments were implemented using a PC with Intel Xeon

CPU E5620 (2.40GHz), 32GB memory, Ubuntu14. All the algo-

rithm are implemented in C++ and are run as the in-memory index.

5. 1. 1 Datasets

We use a large dataset and show the statistics below. Dataset

Table 2 Statistics of the Dataset

Dataset DBLP

number of objects 9316195

Dataset Size 135MB

Max Text Length 12

Average Text Length 9.40

DBLP contains bibliography records in Computer Science, and we

extract 9.3 million worldwide author names from the records.

5. 1. 2 Queryset

We generate queries by randomly selecting 1000 strings and gen-

erate the abbreviation query for each string. We ignore all the spaces

in multikeyword and contecate them into one single string. We re-

move meaningless symbols and only remain the alphabetic letters.

In our experiment, we mainly measure:

（1） Abbreviation Query Response Time. It represents the whole

time to execute a abbreviation query and fetch all the qualified

results.

（2） Top-k Abbreviation Query Response Time. It represents the

whole time to execute a top-k abbreviation query and fetch the

most relevantk qualified results.

5. 2 Abbreviated Query Response Time

In Fig. 5 we show the abbreviated query response time using

dataset DBLP. We vary the query string prefix length from 1 to 8

to see the runtime. When prefix length is longer, CT method be-

comes much slower while our PNI method becomes faster. This is

because CT method costs too much on iteratively search the whole

trie while our PNI almost has no time cost on search of index but



mainly on fetch results phase. When prefix length becomes longer,

qualified strings will reduce drastically and our PNI method will be-

come faster. We also observe that in the most common case, when

prefix length equals 2 or 3, our PNI method is 100 times and 1000

times faster than the CT method respectively.

0 1 2 3 4 5 6 7 8 9

0.01

0.1

1

Ti
m

e 
(m

s)

Prefix Length

 PNI-response
 CT-response

Figure 5 DBLP, Query Response Time

5. 3 Top-k Abbreviated Query Response Time

In Fig. 6 we show the top-k abbreviated query response time. We

setk = 5 and vary the query string prefix length from 1 to 8 to see

the results. Similarly, when prefix length is longer, CT method be-

comes much slower while our PNI method becomes faster after a

wave when prefix length equals 2. CT method still costs too much

on trie traversal search while our PNI is fast at index search and also

has decent performance of top-k results pruning. Additionally, we

also record the index size of both methods. CT costs 5.3Gb while

PNI costs 2.27 Gb whenk = 5. CT also doesn’t support a dynamic

k value become it needs to materialize a top-k rank list on each node

of the trie which will introduce prohibitive memory cost under a

largek value. Compared with that, our PNI supports a dynamick

and the index size will keep constant whenk changes.

0 1 2 3 4 5 6 7 8 9
0.001

0.01

0.1

1

Ti
m

e 
(m

s)

Prefix Length

 PNI-topk
 CT-topk

Figure 6 DBLP, Top-k Query Response Time

6. Conclusion

In this paper, we propose the definition of abbreviation query au-

tocompletion. Then we design an efficient index structure along

with a search algorithm and a top-k fetch algorithm. After that we

give a simple evaluation using a large dataset.

Acknowledgments

This research is partly supported by the Grant-in-Aid for Scien-

tific Research, Japan (16H01722, 26540043).

References
[1] R. A. Baeza-Yates and G. H. Gonnet. Fast text searching for regu-

lar expressions or automaton searching on tries.Journal of the ACM
(JACM), 43(6):915–936, 1996.

[2] Z. Bar-Yossef and N. Kraus. Context-sensitive query auto-
completion. InProceedings of the 20th International Conference on
World Wide Web, pages 107–116. ACM, 2011.

[3] I. Cetindil, J. Esmaelnezhad, T. Kim, and C. Li. Efficient instant-
fuzzy search with proximity ranking. In2014 IEEE 30th Interna-
tional Conference on Data Engineering, pages 328–339. IEEE, 2014.

[4] S. Chaudhuri and R. Kaushik. Extending autocompletion to toler-
ate errors. InProceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 707–718. ACM, 2009.

[5] P. R. Christopher D. Manning and H. Schutze.Introduction to Infor-
mation Retrieval. Cambridge University Press, 2009.

[6] D. Deng, G. Li, H. Wen, H. Jagadish, and J. Feng. Meta: An efficient
matching-based method for error-tolerant autocompletion.Proceed-
ings of the VLDB Endowment, 9(10), 2016.

[7] P. Ferragina and R. Venturini. The compressed permuterm index.
ACM Transactions on Algorithms (TALG), 7(1):10, 2010.

[8] R. Grossi and G. Ottaviano. Fast compressed tries through path de-
compositions.Journal of Experimental Algorithmics (JEA), 19:3–4,
2015.

[9] B.-J. P. Hsu and G. Ottaviano. Space-efficient data structures for top-
k completion. InProceedings of the 22nd International Conference
on World Wide Web, pages 583–594. ACM, 2013.

[10] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead
search.The VLDB Journal, 20(4):617–640, 2011.

[11] M. Shokouhi and K. Radinsky. Time-sensitive query auto-
completion. InProceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
pages 601–610. ACM, 2012.

[12] S. Whiting and J. M. Jose. Recent and robust query auto-completion.
In Proceedings of the 23rd International Conference on World Wide
Web, pages 971–982. ACM, 2014.

[13] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane.
Efficient error-tolerant query autocompletion.Proceedings of the
VLDB Endowment, 6(6):373–384, 2013.

[14] X. Zhou, J. Qin, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa. Beva:
An efficient query processing algorithm for error-tolerant autocom-
pletion. ACM Transactions on Database Systems (TODS), 41(1):5,
2016.


