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Abstract In user-product model, there are two types of datasets: Products and users. The Top-rank query in

user-product model can help users to find matching products in their top-rank. On the other hand, the aggregate

reverse rank query (ARR) can find potential users for multiple products (product bundling). ARR is an essential

tool in marketing analysis that helps manufacturers identify the placement of their product bundling. Unfortunately,

the previous solution for the ARR query is a tree-based method. Due to the curse of dimensionality, the tree-based

method makes ARR query don’t have good performance in high-dimensional data. To address this limitation, we

use a high-dimensional technical named Grid-index, and propose a Grid-index aggregate (GIA) solution to deal with

the ARR query in high-dimensional data. Our experimental results show that the GIA has better performance than

the existing tree-based algorithms.
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1. INTRODUCTION

Top-k queries is a user-view model that obtain the best k

products for a user preference. On the other hand, aggre-

gate reverse rank query (ARR) [3] is a manufacturer-view

model that discovers the potential consumers by retrieving

the most appropriate user preferences for multiple products.

ARR can help manufacturers with the market analysis with

their product bundling.

Figure 1 shows the example of aggregate reverse ranks

query when k = 1. There are 5 different books (p1 ∼ p5)

with two attributes ”price” and the ”rating” in Table (b).

Two users preferences (Tom and Jerry) are shown in Table

(a); these preferences consist of the weights for each attribute

of a book. The score of a book based on a user preference is

the result of the inner product between the book attributes

vector and user preference vector. All scores are ranked with

scores and we think the minimum scores will be preferable.

The ranking results of books by users are shown in the last

cells Table (a). Table (c) shows that the bookshop offers two

kinds of product bundling, to bundle {p1, p2} and {p4, p5}.
ARR evaluates aggregate rank with the sum of each book, so

the bundle of {p1, p2} ranked as 3 + 2 = 5 based on Tom’s

preference. For {p1, p2}, Tom thinks the aggregate rank is

5, and Jerry thinks it is the 6th. ARR-1 returns Tom as a

result since he has more possibility than Jerry to buy the

bundling.

Figure 1: Users data, books data and ARR-1 results.

1. 1 Motivation

The state-of-the-art solution for ARR is the double tree

method (DTM). It is a tree-based methodology, which uses

an R-tree to indexes and prunes the data through a branch-

and-bound method. However, the R-tree or any other spatial

index has a shortcoming: When processing high-dimensional

data sets, the performance declines to close to NAIVE.

We do an experiment to observe the consuming time of pro-

cessing ARR. Figure 2 shows the comparison of performance
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Figure 2: DTM vs NAIVE.

between tree-based algorithm (DTM) and the NAIVE. Ac-

cording to the results, DTM may not outperform the NAIVE

method when processing ARR in high dimensions.

However, both the product’s attributes and the user’s pref-

erences are likely to be high-dimensional. For example, cell

phones consumers care about many features, such as price,

processor, storage, size, battery life, camera, etc. Therefore,

processing ARR with a high-dimensional data set is an im-

portant requirement.

2. RELATED WORK

For top-k queries. The Onion technique [1] precomputes

and stores the convex hulls of data points in layers like an

onion. The evaluation of a linear top-k query is accomplished

by starting from the outmost and processing these layers in-

ward.

Reverse top-k queries [6, 7, 9, 10] have been proposed for

evaluating the impact of a potential product in the market,

based on preferences of users that treat this product as one of

their top-k products. There are also various applications of

reverse top-k queries [9, 10]. However, to answer the reverse

query for some less popular objects, [13] proposed reverse k-

ranks queries, which finds for a given object the top-k user

preferences whose rank for the object is highest among all

users. The most relevant work is our previous work named

aggregate reverse rank query (ARR) [3]. It finds the top-k

users for multiple query products to deal with the application

of product bundling.

Some other related researches on the reverse query are

listed in the following. The essential difference is that they

treat one data set, while in reverse rank queries, there are

two data sets. Given a data point and aim at finding the

queries that have this data point in their result set. Con-

trast with the nearest neighbor search, [4] proposed a reverse

nearest neighbor (RNN) queries. Opposite to RNN, [12]

proposed reverse furthest neighbor (RFN) queries to find

the points who deem query point as their furthest neigh-

bor. [11] classifies RKNN (reverse k nearest neighbor) into

bichromatic and monochromatic queries. RKNN may look

similar with reverse rank queries that obtaining users that

prefer a given product as favorite, but they are completely

different. RKNN evaluates relative Lp distance in one Eu-

clid space with two points. However, reverse rank queries

focus on the absolute ranking among all objects, and scores

are found by inner product with two different vectors from

different data space. The reverse skyline query uses the ad-

vantages of products to find the potential customers based

on the dominance of the competitor’s products [2, 5].

3. PRELIMINARIES

3. 1 Definitions

We first introduce the assumption of the product database,

preference database and the score function, which is same

with the related research [3, 6, 8, 13]. Assume that there is

a product data set P and a preference data set W . Each

p ∈ P is a d-dimensional vector that contains d non-negative

scoring attributes. p can also be represented as a point

p = (p[1], p[2], ..., p[d]), where p[i] is the ith attribute value

of p. i.e., the value on ith dimension of p. The preference

w ∈ W is a d-dimensional weighting vector, and w[i] is a

non-negative weight that evaluates p[i], where
∑d

i=1 w[i] = 1.

The score is defined as the inner product of p and w, which is

expressed by f(w, p) =
∑d

i=1 w[i] · p[i]. A query set Q, is set

of points in the space of product P (but it is not necessary

that Q ⊂ P ). All values are normalized to the range (0,1].

The rank of a q on a specific w is defined as the number

of points which have smaller scores than q:

［Definition 1］ (rank(w, q)). Given a product dataset P , a

preference w, and a query q, the rank of q according to w

is rank(w, q) = |S|, where S⊂=P and ∀pi ∈ S, f(w, pi) <

f(w, q) ∧ ∀pj ∈ (P − S), f(w, pj) >= f(w, q).

To evaluate the rank of a query set Q, related work [3]

gave a definition that the aggregate rank of Q is the sum of

each rank of q ∈ Q:

［Definition 1］（rank） (ARank(w,Q)). The aggregate rank

of Q according to a w isARank(w,Q) =
∑

qi∈Q rank(w, qi).

The definition of aggregate reverse rank query [3] is:

［Definition 2］ (aggregate reverse rank query, ARR). Given

datasets P and W , positive integer k, and query product set

Q, ARR query returns the set S, S⊂=W , |S| = k, such that

∀wi ∈ S, ∀wj ∈ (W − S), ARank(wi, Q) <= ARank(wj , Q)

holds.

3. 2 Tree-based Method for ARR

The state-of-the-art solution for ARR is double tree

method (DTM) [3]. DTM uses two R-trees to index data

P and data W respectively, then filters unnecessary data

with the branch-and-bound methodology. The node of R-



tree (minimum bounding rectangle, MBR) can help to com-

pare multiple p’s and w’s at one time by using the MBRs’

bounds. As shown in Figure 3, the left is the space of data

W , and the right is the space of data P . An R-tree node

ew groups w1, w2, w3 and it’s upper bound ew.up and lower

bound ew.down form the search space (gray area) with Q.

DTM only need do computing of the data in the sandwiched

space, the nodes like e2, e3 and e5 will be pruned directly.

Figure 3: Tree-based method of ARR query.

4. Why tree-based method performed

ARR not good with high-dimensional

data?

In this section, we demonstrate why the tree-based method

has poor performance when processing ARR with high-

dimensional data. There are two reasons: Overlapped nodes

and small filter space.

4. 1 Overlapped Nodes

Figure 4: Overlapped Nodes.

It is well known that R-tree groups similar points as a

node with their MBR, however, the nodes will be overlapped

with each other when indexing high-dimensional data. Due

to the high-dimensional case cannot be plotted, we use a 2-

dimensional example to demonstrate the overlapped nodes.

In Figure 4, an R-tree indexes data points into five nodes

e1 to e5. Unfortunately, all nodes all overlapped each other

and intersected with the borderlines of search space (dashed

line). This time, DTM can prune nothing while doing a

traversal of R-tree and have to compute all data points in

the leaf node. The above situation always happens in high-

dimensional space.

4. 2 Small Filter Space

The reason of overlapped nodes comes from the tree-

structure itself. However, another reason for the bad perfor-

mance is because of the filtering property declines in high-

dimensional space.

As Figure 4 shows, the shape of the gray area can be a

prism or a tetra. The filtering property can be estimated by

measuring the volume of :

V ol = V olTetraX ·V olPrismX+V olTetraY ·V olPrismY (1)

To give an analytical result, we assume that the upper filter-

ing volume are equal to lower filtering volume (V olTetraX =

V olTetraY ), hence:

V ol = 2 · V olTetra · V olPrism (2)

the volume of g-dimensional hyper-tetra is:

V olTetra =
1

g!
(

g∏
i=1

xi) =
1

g!
(1− γ)g (3)

the volume of the hyper-prism is:

Si =
1

2
(xi + x′

i) ·H <= (
1− γ

2
) <=

1

2
(4)

Recall that the length of the range is 1, so a 3 dimensional

prism in the figure, the volume is:

V olPrism3d =
1

3
(S1 + S2 +

√
S1S2) ·H <=

1

2
(5)

This result holds for higher dimensional prisms. The max-

imum volume of the filtered space is as following, where

g = d/2 and means there are same numbers of tetra or prism.

V olmax = 2 · 1

g!
(1− γ)g · 1

2
=

1

g!
(1− γ)g (6)

According to above Equation 6, the volume will be very

small in high-dimensional cases, which proved that the fil-

terable space also becomes small.

5. Proposed Grid-Index

As we know that the most cost part in processing ARR

the linear scan is the computing of the scores (inner prod-

ucts) for comparison. A d dimensional inner product needs

d times multiplications and d times additions, and the mul-

tiplications cost much more than additions. To enhance the

efficiency of the linear scan, we introduce the concept of Grid-

index which can help to avoid most multiplications.

5. 1 Build Grid-index

We first partition the value range of data p and w, no-

tice that all attributes of p ∈ W should belong to the same

range, so do all w ∈ W . In the example of Figure 5, we par-

tition the value range into 4 equal intervals. For the given



p = (0.62, 0.15, 0.73), p[1] = 0.62 falls into the third par-

tition [0.5, 0.75]. p[2] = 0.15, falls into the first partition,

and p[3] is in the third partition. We will store the partition

numbers as an approximate vector, denoted as pa and wa, so

pa = (2, 0, 2) and wa = (0, 2, 1).

Figure 5: 4 partitions, allocating real values into approxi-

mate intervals and getting the approximate vector pa and

wa.

Figure 6: Mapping pairwise (p[i], w[i]) onto the 4× 4 Grids.

Then we combined the range p and range w to form the

grids. The purpose is that we want to map an arbitrary

pair of (p[i], w[i]) into a certain grid, since the inner product

f(w, p) is the sum of pairwise multiplications of (p[i], w[i]).

Figure 6 shows the 4 × 4 grids and the mapping (p[i], w[i])

onto grids. It is important to know that the same value

range makes these grids can be re-used for mapping all pairs

(p[i], w[i]), i.e., No matter how much dimensions the data

has, only one Grid is sufficient.

Suppose that both the value range of p and w are di-

vided into n partitions, and the step values of partition are

represented by a (n+1)-element vector αp for points and

αw for weights. In the example of Figure 5, αp = αw =

(0, 0.25, 0.5, 0.75, 1). The Grid-index is a 2-dimensional ar-

ray and stores the multiplication results of all step values:

Grid[i][j] = αp[i] · αw[j], i, j ∈ [0, n] (7)

5. 2 Upper and Lower Bounds of Score f(w, p)

We pre-calculate the approximate vectors set PA and WA

for data P and W , respectively. For a pa ∈ PA and a

wa ∈ WA, we use the Grid-index to obtain the upper bound

U(w, p)], and lower bound L(w, p):

L[fw(p)] =
d∑

i=1

Grid[pa[i]][wa[i]] (8)

U [fw(p)] =

d∑
i=1

Grid[pa[i] + 1][wa[i] + 1] (9)

Obviously, it costs only d times additions if the relation of

scores can be confirmed by above upper or lower bounds.

Algorithm 1 GIA

Input: PA,WA, P,W,Q, k

Output:

1: buffer ← ∅
2: kthRank ←∞
3: for each wa ∈WA do

4: Candidate ← ∅
5: Counter ← Domin.size

6: Compute each f(w, q) of q ∈ Q and store in Qscores

7: Sort Qscores in descending

8: for each pa ∈ (PA / Domin ) do

9: for i to |Q| do
10: if U [f(w, p)] <= Qscores[i] then

11: Counter ← Counter + |Q| - i
12: if counter == kthRank then

13: break to check next wa

14: if L[f(w, p)] <= Qscores[i] <= U [f(w, p)] then

15: Candidate← Candidate ∪ {p}
16: if p dominates Q then

17: Domin ← Domin ∪ {p}
18: Refine Candidate and update Counter.

19: if Counter >= kthRank then

20: continue to next wa

21: else

22: buffer.insert(w,Counter)

23: kthRank ← the kth rank in buffer.

24: return buffer

5. 3 Grid-index Aggregate Reverse Rank Algo-

rithm (GIA)

Algorithm 1 describes the proposed method GIA. It is a

double looping framework that scans each pa ∈ PA for each

wa ∈ WA, and look up the Grid-index to avoiding comput-

ing. For each wa, we use a Counter to record the aggregate

rank ARank(w,Q) (Line 4). In the inner loop(Line 8-17),

the Counter will be update when the f(w, q) is greater than

a current point p. We carry out an optimization that calcu-

lates and sorts each q’s score in advance (Line 6-7). We use

Grid-index to obtain the U [f(w, p)], if U [f(w, p)] is smaller

than a q’s score, the Counter will increase by the remained

number of q and we don’t need to compare more (Line 10-11).

If the rank relationship can not decide by the upper and lower

from Grid-index, we add these kind of p into Candidate (Line

14-15), and we will refine the Candidate after scanning all

pa if it is necessary (Line 18). Another optimization is that

“global dominating point”, a p is a global dominating point

if all p[i] <= q[i] where i = 1, 2, ..., d, and we keep them into



Parameter Values

Data dimensionality d 3 ∼ 20, 3

Distribution of data set P UN,CL,RE

Distribution of data set W UN,CL

Data set cardinality of |W | and |P | 100K

Experiment times 1000

Number of clusters 3
√
|P |, 3

√
|W |

Table 1: Experimental parameters and default values(in

bold) .

a set Domin (Line 16-17). We will skip checking the global

dominating points (Line 8) instead of initializing Counter

by the size of Domin (Line 5). A k-element buffer is used

to keep the top-k w’s and their aggregate ranks for Q as the

result of ARR query (Line 1, 22). The algorithm will break

and start to check the next wa when the Counter reaches

kthRank, which is initialize as ∞ (Line 2) and update by

the rank value of the last element in buffer (Line 23).

6. EXPERIMENT

We present the experimental evaluation of the SCAN,

DTM and GIA algorithms for aggregate reverse k-rank.

SCAN has the same strategy as that of GIA; the only dif-

ference is that SCAN computes the scores while GIA uses

Grid-index. All algorithms are implemented in C++ and

the experiments run on a Mac with 2.6 GHz Intel Core i7,

16GB RAM, and 500GB flash storage, OS X Yosemite.

6. 1 Experiment setup

Data set P . We employed both synthetic data and real

data for products P . Synthetic data set are uniform (UN)

and clustered (CL), whose attribute value range is [0, 1). In

UN, all attributes are generated independently following a

uniform distribution. CL is generated by randomly selecting

M centroids (M = 3
√

|P |) which following a uniform distri-

bution. Each coordinate is generated following the normal

distribution with variance σ = 0.1 and mean equal to the cor-

responding coordinate of the centroid. The real data, named

HOUSE, contains 201760 6-dimensional tuples, representing

American family annual payment on gas, electricity, water,

heating, insurance, and property tax in 2013. The dataset

HOUSE also used into related search [6, 8].

Data set W . For data set W , we also have UN, CL data

set that is in a same generating way with data set P .

Parameters. Parameters are shown in Table 1 where the

default values are d = 6, |P |=100K, |W |=100K, k = 10, |Q|
= 10, and both P and W are UN data.

Metrics. Our metrics is the query execution time required

by each algorithm. We do each experiment over 1000 times

and present the average value. The query point set Q is

randomly selected from P .
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Figure 7: Experimental result on UN data, |P | = 100K, |W |
= 100K, |Q| = 10, k = 10, d = 2 ∼ 20.
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Figure 8: Experimental result on UN data, |P | = 100K, |W |
= 100K, |Q| = 10, d = 6, k = 10 ∼ 50.
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Figure 9: Experimental result on UN data, |P | = 100K, |W |
= 100K, k = 10, d = 6, |Q| = 5 ∼ 25.
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Figure 10: Experimental result on CL data, |P | = 100K, |W |
= 100K, |Q| = 10, k = 10, d = 2 ∼ 20.
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Figure 11: Experimental result on HOUSE data, |P | = 100K,

|W | = 100K, |Q| = 10, d = 6, k = 10 ∼ 50.

6. 2 Experiment result

Un data. Figure 7 shows the experimental results on uni-

form distribution data sets on varying dimension d (from 3

to 20). According to the result, we can see that both SCAN

and GIA becomes faster than DTM algorithm after six di-

mensions. GIA always faster than SCAN at least two times

because it use Grid-index to filter. Figure 8 and Figure 9

show the CPU time of varying k (from 10 to 50) and varying

|Q| (from 5 to 25) respectively. All algorithm are insensi-

tive to k and Q since k ≪ |P |, k ≪ |W | and |Q| ≪ |P |,
|Q| ≪ |W |.
CL data. Figure 10 shows the experimental results on

Cluster data sets on varying dimension d (from 3-20). No-

tice that DTM take less time to finish querying than UN

data because Cluster data is easy to index by R-tree. But

GIA still becomes outperform DTM after eight dimensions.

HOUSE data. Figure 11 shows the performance of real

data set HOUSE with different k (from 10 to 50). Clearly,

GIA is faster than SCAN and DTM.

7. CONCLUSION

In marketing analysis, aggregate reverse rank query can be

used to help manufacturers recognize their consumer base by

matching their bundled products with user preferences. The

state-of-the-art solution DTM is a tree-based algorithms, and

are not designed to deal with high-dimensional data. In this

paper, we proposed the Grid-index and the GIA algorithm

to overcome the cost of high-dimensional computing. Ex-

perimental results confirmed the efficiency of the proposed

algorithm when compared to the tree-based algorithms es-

pecially in high-dimensional cases.

In future work, we will focus on the optimization when the

user preferences data w ∈ W has many zero entry, i.e., when

W is sparse. Since in practice, a user is normally interested

in a few attributes of the products.
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