
DEIM Forum 2018 I3-1

Smart Distributed Query Execution for Event-driven Stream Processing

Salman AHMED SHAIKH† and Hiroyuki KITAGAWA††

† Center of Computational Sciences

University of Tsukuba, Japan

†† Faculty of Engineering, Information and Systems

University of Tsukuba, Japan

E-mail: †salman@kde.cs.tsukuba.ac.jp, ††kitagawa@cs.tsukuba.ac.jp

Abstract Due to the rapid growth of stream data being generated by sensors, micro-blogs, e-businesses, etc.,

many organizations require on-line processing of their data for real time analysis and actionable alerts. It is not pos-

sible to process such voluminous and velocious data in real time using the traditional centralized stream processing

engines. Hence distributed stream processing has emerged to facilitate such large scale real time processing. In this

work we present a smart distributed event-driven stream processing approach. In contrast to the ordinary stream

processing, event-driven stream processing generates query results on the occurrence of specified events only. In the

basic event-driven stream processing, even when no event is raised input stream tuples are continuously processed

by query operators, though they do not generate any query result. This results in increased system load and wastage

of system resources. Whereas in the smart event-driven stream processing scheme, incoming tuples are processed in

the presence of events only resulting in reduced system load. The proposed smart distributed event-driven stream

processing utilizes the concept of smart query execution to distribute the data stream among the distributed worker

nodes in the presence of events only; while in the absence of events no data is distributed as it can not generate

query output. This smart data distribution can significantly reduce the network traffic in the absence of events

and ultimately results in improved overall system throughput. Detailed experiments are performed to prove the

effectiveness of the proposed framework.

Key words distributed data processing, data stream processing, smart query execution, event-driven stream

processing

1. Introduction

With the passage of time, the number of devices connected

to the internet is increasing exponentially. Gartner, Inc.,

forecasts that 8.4 billion connected devices will be in use

worldwide by the end of 2017, up 31 percent from 2016, and

will reach to 20.4 billion by 2020 [12]. These devices include

sensors, GPS, smart phones, personal computers and servers.

They generate continuous data, also known as data streams.

Many organizations require timely processing of such data

for on-line actionable alerts or for real-time analysis. For

instance, 1) Car insurance companies install sensors on cars

to track their position for monitoring purpose and receive

location data as continuous data stream which must be pro-

cessed in real time to avoid car thefts; 2) Mobile companies

receive call records and data usage information from their

subscribers continuously in the form of data stream which

must be processed in real time for billing, etc. It is not pos-

sible to process such voluminous and velocious data in real

time using traditional centralized Stream Processing Engines

(SPEs). A new class of applications has thus emerged to

facilitate such large scale real time data processing known

as distributed stream processing systems. In this work we

present a smart distributed query execution framework for

event-driven stream processing. An event-driven query is ac-

tivated (generates query output) with the occurrence of an

event and is deactivated (stop generating query output) after

executing for a fixed time duration or after the expiration of

the event. For instance:

Endangered Species Monitoring: Africa is known to

have more than 400 species of endangered animals and mon-

itoring endangered species is an essential and critical step

in their conservation [19]. Wearable sensors and surveillance

cameras are usually employed to monitor the movement of

these animals. Rather than recording the video of all the

endangered animals continuously, which is memory costly,

an event-based recording may be used. Hence, on the detec-

tion of abnormal movement of an animal from sensor stream

(which can be considered as an event in this work), wild-life

experts may be interested in recording the video for some

fixed time duration or as long as the abnormal movement

continues.

The above mentioned event-driven processing can be

achieved by join query utilizing the time-based window for

the event stream, however use of the time-based window

generates a lot of useless intermediate tuples which do not

contribute to the query output. To address this problem,

we proposed a smart event-driven stream processing scheme

in [17]. The smart scheme uses smart windows to buffer the

tuples arriving from ordinary (non-event) streams during the

absence of event stream tuples. (We say the query is inac-

tive.) The tuples in the smart windows buffers are flushed

and processed by the downstream operators only on the ar-

rival of tuples from the event streams. (We say the query is

active.) In addition, the buffered tuples which get expired

due to the window sizes are deleted directly from the win-

dow buffers without being processed by the downstream op-

erators. This results in reduced system load and improved

system throughput. The smart scheme is especially useful

when the event stream input rate is lower than the ordinary

streams which is the usual case.

In this work we propose a smart distributed event-driven

stream processing framework to process the voluminous data

which can not be handled by a centralized event-driven

stream processing engine. The proposed framework employs

a task manager to distribute the stream processing among

the distributed worker nodes (dispatchers and executors) in

a way to minimize the data movement among the worker

nodes. Precisely, the dispatchers make use of smart windows

to buffer or forward the non-event stream tuples among the

executor nodes. Hence in the absence of an event, no data

need to be sent from dispatchers to executors resulting in

reduced system and network load. The main contributions

of this work can be summarized as follows:

• A smart distributed event-driven stream processing

framework capable of minimizing data movement among its

worker nodes for an event-driven query.

• Detailed experimental evaluation to prove that the

proposed framework can significantly reduce the network

bandwidth usage and is more scalable than ordinary dis-

tributed event-driven stream processing frameworks.

The rest of the paper is organized as follows. Section 2.

discusses the related work. Section 3. presents essential con-

cepts. In section 4., the proposed smart distributed query

execution framework is presented. Section 5. presents an

extensive experimental study while Section 6. concludes this

paper and discusses future directions.

2. Related Work

We now discuss previous related research, focusing primar-

ily on continuous query execution and distributed processing.

There are two main execution strategies for continuous

queries (CQs): timer-based [18] [21] and change-based [5] [4]

[16] [3]. Timer-based (periodic) CQs are triggered only at the

time specified by the user and are executed periodically for

some constant time interval. Each time the timer-based CQ

is triggered, it evaluates the newly arrived data. The timer-

based CQs are analogous to the event-driven CQs, where the

occurrence of an event or arrival of data from event stream

triggers the query. On the other hand, change-based CQs are

triggered as soon as new data become available. The queries

in this paper are based on the CQL query language [7]. Al-

though the main focus of CQL is change-based CQs, we can

use time-based windows to achieve the functionality of event-

driven CQs. For this sake, the interval between the arrivals

of event stream tuples serves as the interval between consecu-

tive query triggerings, and the size of the time-based window

serves as the duration for which the query remains active. In

this paper, a CQ which employs the time-based windows is

called an event-driven query.

With the rise of the need to process voluminous data, many

distributed stream processing frameworks have been pro-

posed. Spark Streaming [2], Storm [3], Flink [9], Samza [1],

Borealis [4], Heron [14] are some of the well known and com-

monly used distributed stream processing frameworks which

also supports event-driven stream processing. However our

proposed framework does not only support distributed event-

driven processing but it also supports smart data distribution

among the distributed worker nodes. The proposed frame-

work is capable of minimizing the network bandwidth us-

age by limiting the amount of data that must be transferred

among the distributed nodes for the distributed query pro-

cessing. Load balancing in distributed stream processing en-

gines is a known research issue and is handled via key group-

ing by many existing distributed frameworks [11] [20] [13] [8]

[10] [15]. When a load imbalance situation is detected, the

system starts a balancing procedure which moves part of the

keys away from an overloaded worker node. The proposed

smart distributed framework on the other hand primarily fo-

cus on reducing the network usage by transferring the data

among the worker nodes smartly and can be used with the

existing state-of-the art distributed frameworks to utilize the

state-of-the-art load balancing and fault tolerance schemes.

3. Essential Concepts

3. 1 Incremental Computation over Data Streams

The computation which updates its output incrementally

instead of re-computing everything from scratch for succes-

sive runs of a job with input changes is called incremental.

It is important to employ incremental computation for data

streams, where the data arrives continuously and at high

speed and recomputing everything from scratch is expensive.

To achieve incremental computation in some of the pro-

toype SPEs like STREAM [6] and JsSpinner [17], each stream

tuple is additionally tagged as either an insertion ”+” or

deletion ”-”. These tagged tuples inform the query DAG’s

downstream operators to update their synopsis. E.g., when

a new stream tuple s is read by the JsSpinner SPE, it is

appended with a timestamp t and a ”+” tag, thus forming

an element e of the form < s, t,+ >. It inserts element e in

the window operator’s synopsis. On the other hand, if an old

element e′ expires due to the window size it is removed from

the synopsis. The window then outputs elements < s, t,+ >

and < s′, t,− >, which are sent to the query downstream

operators’ synopsis to reflect the addition and deletion of

elements e and e′ respectively.

3. 2 Event-driven Stream Processing

Event-driven stream processing can be defined as the pro-

cessing of a continuous query (CQ) activated by the occur-

rence of an event. It is implemented using the time-based

window operator available in most of the existing SPEs (here-

after called basic scheme), however the use of time-based

window results in the generation and processing of useless

intermediate tuples which do not contribute to the query

output. To solve this problem we proposed a smart query

execution scheme (hereafter called smart scheme) in [17]. In

the following we summarize the working of the basic and

the smart schemes which are essential in understanding the

proposed smart distributed query execution scheme.

3. 2. 1 Basic Query Execution

The basic query execution scheme processes the incoming

ordinary stream tuples continuously however generates query

output only on the occurrence of event(s) or in the presence

of event stream tuples. Processing of ordinary stream tuples

in the absence of event(s) keeps the system resources busy

unnecessarily.

［Example 1］ Query 1 shows a simple event-driven query

written in CQL. In the query S1 is an event stream, with win-

dow size τ seconds, whose tuples activate the query whereas

S2 is an ordinary stream with window size n. Let τ = 2 sec-

onds and n = 500 rows. Assume that at timestamp t1, event

stream window (We) is empty whereas ordinary stream win-

dow (Wo) contains 500 tuples. Since We is empty the query

is inactive, i.e., do not generate any query result however

in the basic scheme, ”+” elements corresponding to the 500

ordinary stream tuples are sent to the downstream query

operators (selection and join operators in case of Query 1).

Select S1.A, S1.B, S2.C

From S1[Range τ], S2[Rows n]

Where S1.A = S2.A

Query 1 Join query

Further assume that at timestamp t2, We receives one tuple

and Wo receives another set of 500 tuples. This causes the

query to become active (generates result) and send 500 ”-”

elements corresponding to the expired ordinary stream ele-

ments which arrived at t1. The query remains active for 2

seconds (i.e., for timestamps t2 and t3) which is the size of

We and we call it active duration. If no event stream tuple

arrive at timestamps t3 and t4, the query becomes inactive

again.

3. 2. 2 Smart Query Execution

To avoid the generation of unnecessary tuples which do not

contribute to the query output, we propose a smart event-

driven stream processing in [17]. In the basic event-driven

stream processing, ordinary stream tuples need to be pro-

cessed to maintain the current status of row-based windows

to guarantee correct query results on the arrival of an event

stream tuple. However in [17] we identified that the corre-

sponding ”+” elements do not need to be sent to downstream

operators when the query is inactive. The smart scheme uses

a smart window to buffer the tuples arriving from ordinary

stream during the absence of event stream tuples.

Smart window is a modified window operator of CQL spec-

ification [7]. The synopsis of the smart window operator is

divided into two parts: output and suspended. Both the out-

put and the suspended parts keep recent incoming tuples of

the ordinary (non-event) stream. In the smart scheme, when

a tuple e arrives from an ordinary stream, the system checks

whether the query Q is active or inactive. If Q is active, the

smart window keeps e in the output part and sends a corre-

sponding ”+” element to Q′s downstream operators. While

if Q is inactive, the smart window buffers e in the suspended

part and does not output any ”+” element. On changing

the state from inactive to active, the smart window of query

Q generates ”+” elements for all the buffered elements and

sends them to the downstream operators. During Q′s in-

active duration, the buffered elements which expire due to

the window size are deleted directly from the smart window

without the need to generate ”-” tuples for them, resulting

in reduced system load.

［Example 2］ Once again consider Query 1 and the param-

eter values given in Example 1. At timestamp t1, the query

is inactive due to the absence of any tuple in We. In the

smart query execution scheme, the 500 incoming ordinary

stream tuples at t1 are buffered in the suspended part of

the smart window and no ”+” element is sent to the down-

stream operators. The query activates with the arrival of an

event stream tuple at t2 and the 500 tuples buffered in the

suspended part of the smart window expires due to window

size, however in contrast to the basic scheme, the expired

tuples are deleted directly from the smart window without

the need to send corresponding ”-” tuples to downstream op-

erators. Since the query is active at t2 and remains active

for τ = 2 seconds, the ordinary stream tuples arriving at t2

and t3 contribute to the query output and deactivate at t4 if

there is no tuple in We.

The smart scheme is especially useful when the event

stream has lower arrival rate than ordinary stream. Con-

sider a simple join query (Query 1) and let Ie: event stream

tuples arrival interval (sec), We: event stream window size

(sec), Ro: ordinary stream arrival rate (tuples/sec), and Wo:

ordinary stream window size (no. of rows). The main ad-

vantage of the smart scheme comes from the ordinary stream

tuples deleted directly from the suspended part of smart win-

dow. The number of ordinary stream tuples arriving during

the inactive duration can be given by (Ie −We) ∗Ro. Hence

the smart scheme is advantageous if the number of ordinary

stream tuples arriving during the inactive duration is greater

than the ordinary stream window sizeWo, which can be given

by: (Ie −We) ∗Ro > Wo. For details, refer our work [17].

4. Smart Distributed Event-driven Stream

Processing

This section presents our proposed smart distributed

event-driven stream processing framework. The proposed

framework is capable of reducing network load by mini-

mizing data movement between distributed nodes and can

achieve better scalability than the existing distributed event-

driven stream processing frameworks. In the following we

will talk about the main components of the proposed frame-

work and the smart distributed query execution for event-

driven stream processing.

User

St
re

am
 S

o
u

rc
e

s

Task Manager

Real-time Analysis

Actionable Alerts

Data Marts

Dispatcher

Executor

St
re

am
 O

u
tp

u
ts

…

…

A
P

H
an

d
le

r

Application
Programs

Figure 1 Smart Distributed Query Execution Framework

4. 1 Distributed Framework

The main focus of the proposed framework is the reduc-

tion of network bandwidth usage and scalable data stream

processing. Figure 1 presents our proposed framework com-

prising of the following four main components 1) APHandler,

2) Task manager, 3) Dispatcher, and 4) Executor.

4. 1. 1 APHandler

This is an application programmer interface (API) for ac-

cepting user queries and registering them to the task man-

ager. The APHandler is also responsible for accepting query

results from executors, integrate them and send them to user

or application programs. Depending on the number of execu-

tors and the size of query output, the number of APHandler

nodes for query output integration may vary.

4. 1. 2 Task Manager

This component receives user queries from APHandler,

parses them into query intermediate representations and con-

verts them into directed acyclic graph (DAG) of operators.

The task manager also keeps track of the active worker

nodes (dispatchers and executors) and assigns them tasks. A

worker node is considered active if it is ready to accept query.

The task manager is provided with a configuration file with

each query which is submitted by end-user while registering

query, specifying the number of executors and dispatchers to

be used for each query. A worker can be assigned the role

of a dispatcher or an executor dynamically. One dispatcher

can feed data to several executors. The amount of data dis-

patched by a dispatcher is limited by its network adapter

and the category of ethernet cable, whereas the amount of

data which can be processed by an executor is limited by

the query complexity assigned to it. Hence, depending upon

the available resources and query complexity, end-user can

determine the number of dispatchers and executors.

4. 1. 3 Dispatcher

Dispatchers in the proposed framework behave like a

stream source and can vary from one to several. Generally

dispatchers will read tuples from an external source and emit

them to the executor(s). Dispatcher can emit more than one

stream for a query. Dispatchers employ different data dis-

tribution policies, which are discussed later. At the time

of role assignment, the task manager specifies the stream

source(s), distribution policies and the destination(s) of in-

put stream(s) for each dispatcher. Dispatchers play main

role in reducing the network bandwidth usage in the pro-

posed framework which is discussed in Sec. 4. 2.

4. 1. 4 Executor

Executors are the main processing units of our proposed

framework. Generally, executors will execute the query

DAGs and perform operations including selections, projec-

tions, joins, etc. Depending upon the complexity of the

Time (s)

S2 (Ordinary)

S1 (Event)

A C
w 3

A C
y 1

A C
w 8

A C
z 9

Time (s)

Input streams

t=𝑡1t=𝑡2t=𝑡3t=𝑡4t=𝑡5

A C
v 8

5 2
A B
y 4

t=𝑡1t=𝑡2t=𝑡3t=𝑡4t=𝑡5

S1

5 2
A B
y 4

S2

A C
y 1

S1

5 2
A B
y 4

S2 A C
w 8

Dispatcher

Executor1

Executor2

A C
w 3

A C
v 8

A C
z 9

(a) Ordinary Dispatcher Distribution

Time (s)

S2 (Ordinary)

S1 (Event)

A C
w 3

A C
y 1

A C
w 8

A C
z 9

Time (s)

Input streams

t=𝑡1t=𝑡2t=𝑡3t=𝑡4t=𝑡5

A C
v 8

5 2
A B
y 4

t=𝑡1t=𝑡2t=𝑡3t=𝑡4t=𝑡5

S1

5 2
A B
y 4

S2 A C
y 1

S1

5 2
A B
y 4

S2 A C
w 8

Dispatcher

Executor1

Executor2

(b) Smart Dispatcher Distribution

Figure 2 Dispatcher data distribution

query, a query DAG may be divided among multiple ex-

ecutors. The executors output is available to end-user via

APHandler.

4. 2 Smart Distributed Query Execution for

Event-driven Stream Processing

As discussed in section 3. 2. 2, the smart query execution

scheme makes use of a smart window for ordinary (non-

event) stream to buffer the stream tuples in the absence of

event stream tuples. The smart window releases the buffered

tuples to downstream operators only on the occurrence of an

event.

We utilized the smart query execution scheme to re-

duce the network load which ultimately results in improved

throughput and better scalability. In the proposed smart

distributed framework, the dispatchers read the input data

streams, however in the absence of event stream tuples, no

input stream tuple is sent from dispatchers to executors. The

ordinary (non-event) stream tuples during the query inactive

duration are buffered in dispatchers and sent to executors

only on the arrival of event stream tuples. The ordinary

stream tuples are deleted directly from the smart window

buffer (which is located in dispatchers) on their expiration

without the need to send ”-” tuples to executors, resulting

in reduced network load.

［Example 3］ Consider an event-driven join query (Query 1)

which is to be processed by a distributed stream processing

framework. Assume that the stream S1 is an event stream,

with window size τ = 2 seconds, whose arrival activates the

query while S2 is an ordinary stream with window size n =

1. Furthermore assume that the dispatcher employs round-

robin distribution scheme. In the distributed framework, the

dispatcher must distribute incoming data streams among all

the executors in a way to guarantee correct join output. One

simple approach, which is used in this example, is to repli-

cate stream S1 to all the executors and distribute stream

S2 in a round-robin fashion among the executors. Hence in

the basic dispatcher distribution in Fig. 2(a), the only tuple

of S1 <A:y, B:4> is replicated to both the executors while

the tuples of stream S2 are distributed in the round-robin

fashion among the two executors.

However in the proposed smart distributed framework, dis-

patchers employ smart windows for either buffering or for-

warding data streams to executors for join execution. The

smart windows in dispatchers buffer the stream tuples in the

absence of event stream tuples. Hence no tuple is forwarded

to executors at timestamps t1 and t2 as shown in Fig. 2(b).

At timestamp t3, the query activates with the arrival of S1

tuple <A:y, B:4>, hence <A:y, B:4> is forwarded to all the

executors while S2 tuple at timestamp t3, i.e., <A:y, C:1>, is

sent to the Executor1. Since the event stream window size is

2 seconds, the query remains active at timestamp t4, causing

the dispatcher to forward the stream S2 tuple at timestamp

t4, <A:w, C:8> to the Executor2. At timestamp t5, the S1

tuple <A:y, B:4> expires, which deactivates the query, hence

no tuple is sent to any executor. Comparing Figs. 2(a) and

2(b), one can easily find that the proposed smart distributed

event-driven stream processing can significantly reduce the

data that need to be sent over network, resulting in reduced

network load and improved throughput and scalability.

In the proposed distributed framework, the main query

processing is done by executor nodes. On the other hand, the

worker nodes which are assigned the role of dispatcher reads

the data stream tuples from one or more external source(s),

manages their window operators and distributes them to its

assigned executor node(s). The user can specify the data

distribution policy to distribute the stream tuples among

the executor nodes including 1)replicate: each stream tu-

ple is forwarded to all the executor nodes, 2)roundrobin:

stream tuples are evenly distributed among the executor

nodes in round robin fashion, and 3)hashing: stream tuples

are hashed among executor nodes with respect to primary

key or other suitable attribute. For the case where one in-

put stream need to be dispatched by multiple dispatchers,

hashing is employed to distribute input stream among dis-

patchers in addition to one of the above distribution policies

for the distribution of input stream among executors.

The worker nodes which are assigned the role of executor

need to process incoming data streams from the dispatchers

using the smart query execution scheme discussed in Section

3. 2. 2 only during the query active duration. Since the smart

query execution scheme is capable of reducing the system

load by limiting the movement of useless intermediate tuples

Select S1.A, S1.B

From S1[Rows n]

Where S1.B > 100

Query 2 Selection query

Select S1.A, S1.B, S2.C

From S1[Rows n], S2[Range τ]

Where S1.A = S2.A

Query 3 Join query

among query operators, it results in increased throughput.

Furthermore, in case of complex queries where a query DAG

is divided among multiple executors, the smart query execu-

tion need to transfer minimum amount of data to the next

executor saving significant amount of network bandwidth.

5. Experiments

5. 1 Experimental Setup

For the sake of experiments we used our locally developed

prototype SPE, JsSpinner [17], which enables users to regis-

ter CQL queries. JsSpinner supports both the basic and the

smart event-driven stream processing schemes. The experi-

ments are performed on HP BladeSystem c7000 server with

10 nodes, where each node is equipped with Intel Xeon 20

core processor (ES-2650 v3 @ 2.3GHz), 6 GB RAM and 10

Gbps Ethernet networking card. Each node is operated by

Ubuntu 14.10 OS. For the experiments with higher number

of executors than the number of nodes, multiple executors

are deployed as separate processes on separate cores of the

same node.

Stream Data Generation and Join Processing: For the ex-

periments, two synthetic data streams (S1 and S2) are used

with schemas S1(A, B) and S2(A, C), respectively. Here

A is a common string attribute of both the streams, while

B and C are the integer attributes. The data streams are

generated using random strings for the string attributes and

random integer values for the integer attributes. For the

evaluation we used Queries 2 and 3. Query 2 is a simple

selection query while Query 3 is a join query with S1 as an

ordinary stream and S2 as an event stream. In order to guar-

antee correct join processing and efficient load balancing in

Query 3, event stream S2, which has low arrival rate, is for-

warded to all the executor nodes where as ordinary stream

S1 is distributed using round-robin policy among the execu-

tor nodes. In the Query 3, arrival of data from S2 activates

the query. The query remains active for the duration of the

time-based window size. Unless otherwise stated, the follow-

ing default parameter values are used in the experiments: Ie

= 5 seconds, We = 1 second, Ro = 500k tuples/second and

Wo = 1000 rows.

5. 2 Experimental Evaluation

The experimental evaluation is divided into network load

comparison of the proposed framework (Smart) with the ba-

sic distributed event-driven stream processing (Basic) and

measurement of the scalability of the proposed framework.

0

0.5

1

1.5

2

2.5

3

1 2 3 4

N
e

tw
o

rk
 L

o
ad

 (
G

b
p

s)

Dispatchers

Basic
Smart

(a) Ie = 1s

0

0.5

1

1.5

2

2.5

3

1 2 3 4

N
et

w
o

rk
 L

o
ad

 (
G

b
p

s)

Dispatchers

Basic
Smart

(b) Ie = 5s

Figure 3 Network Load - Basic Vs. Smart Distributed Schemes

5. 2. 1 Network Load

This section shows that the use of the proposed framework

can significantly reduce the network load which results in im-

proved throughput. Here the network load can be defined as

the amount of data that need to be sent by dispatchers to

executors to process the query. Figures 3(a) and 3(b) com-

pare the network load in gigabit per second (Gbps) for Ie

values 1 second and 5 seconds respectively for the Query 3.

In both the figures, the network load increases with the in-

crease in number of dispatchers which is due to the increase

in the number of connected dispatchers and executors. Here

one dispatcher dispatches data to four executors.

In Fig. 3(a), the network load for the basic and the smart

schemes is same. This is due to the fact that at Ie = 1 second

and We = 1 second, the query remains active all the time

and the dispatchers need to send data continuously to the

executors, which is the case of basic distributed scheme. On

the other hand in Fig. 3(b) with Ie = 5 seconds, the smart

scheme results in reduced network load for all values of num-

ber of dispatchers. This is due to the fact that with Ie = 5

seconds and We = 1 second, the query remains active for 1

second while inactive for 4 seconds during which dispatchers

do not send any data to the executors, hence resulting in

reduced network load for smart scheme in Fig. 3(b).

5. 2. 2 Scalability

Next we perform experiments to evaluate the scalability

of the basic and the smart event-driven query execution

schemes in the distributed environment in terms of system

load and maximum system throughput. The system load can

be defined as the total number of tuples processed by all the

query operators, whereas the maximum system throughput

can be defined as the total number of input streams (includ-

ing event and ordinary) tuples processed by system per unit

time. One of the obvious benefit of distributed processing is

the scalability as can be observed from Fig. 4. Since Query

2 is a simple selection query, we can achieve better through-

put for this query compared to Query 3 which is a join query.

Furthermore, our distributed framework scales quite linearly

with the increase in the number of executors.

Next we perform experiments to compare the maximum

system throughput and the system load of the basic and the

→
H
ig
h
e
r
b
e
tt
e
r

0

1,000k

2,000k

3,000k

4,000k

5,000k

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Th
ro

u
gh

p
u

t
(t

u
p

le
s/

s)

Executors

Query1
Query2

Figure 4 Scalability

→
H
ig
h
e
r
b
e
tt
e
r

0

1,000k

2,000k

3,000k

4,000k

5,000k

6,000k

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Th
ro

u
gh

p
u

t
(t

u
p

le
s/

s)

Executors

Basic
Smart

Figure 5 System throughput

←
L
o
w
e
r
b
e
tt
e
r

0

2,000k

4,000k

6,000k

8,000k

10,000k

12,000k

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Sy
st

em
 L

o
ad

 (
tu

p
le

s/
s)

Executors

Basic
Smart

Figure 6 Average system load

→
H
ig
h
e
r
b
e
tt
e
r

0

1,000k

2,000k

3,000k

4,000k

5,000k

6,000k

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
Th

ro
u

gh
p

u
t

(t
u

p
le

s/
s)

Executors

Ie = 1
Ie = 5
Ie = 9

Figure 7 System throughput

smart distributed schemes for the Query 3. Figure 5 shows

that the smart distributed query execution clearly outper-

forms the basic distributed query execution. This difference

in throughput can be explained through Figure 6 which com-

pares the system load of the basic and the smart schemes.

Lower system load enables the system to process higher

number of incoming tuples, resulting in improved system

throughput. Here again we can observe that the proposed

smart distributed query execution framework scales linearly.

Finally experiments are performed for different values of Ie.

From Figure 7, it is clear that the system throughput is lower

for the lower values of Ie and vice versa. It is because for the

higher Ie values the query remains inactive for long duration

resulting in reduced network traffic and the direct deletion

of a majority of tuples from the smart window. This let the

system process higher number of stream tuples resulting in

improved system throughput.

6. Conclusion and Future Work

This work proposes a smart distributed query execution

framework for data streams which is an event-driven stream

processing approach. The proposed framework employs a

task manager to distribute stream processing among the dis-

tributed worker nodes (dispatchers and executors) in a way

to minimize the data movement among worker nodes. Dis-

patchers make use of smart windows to buffer or forward the

non-event stream tuples among executor nodes. Hence in the

absence of an event, no data need to be sent from dispatchers

to executors resulting in reduced system and network load.

Experiments prove that the proposed framework can signifi-

cantly reduce the network bandwidth usage and is more scal-

able than basic distributed event-driven stream processing.

In the future we plan to integrate our proposed framework

with the existing state-of-the-art distributed stream process-

ing frameworks in order to combine the strengths of both

the frameworks, i.e., smart distributed processing of the pro-

posed framework and the load balancing and fault tolerance

of the existing frameworks.

Acknowledgments

This research was partly supported by the program ”Re-

search and Development on Real World Big Data Integration

and Analysis” of the RIKEN, Japan.

References

[1] The Apache Software Foundation., Apache Samza. http:

//samza.apache.org/, 2017. [Online; accessed 27-April-

2017].

[2] The Apache Software Foundation, Apache Spark. http:

//spark.apache.org/, 2017. [Online; accessed 27-April-

2017].

[3] The Apache Software Foundation, Apache Storm. http:

//storm.apache.org/, 2017. [Online; accessed 27-April-

2017].

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,

A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.

The Design of the Borealis Stream Processing Engine. In

Second Biennial Conference on Innovative Data Systems

Research (CIDR 2005), Asilomar, CA, January 2005.

[5] D. J. Abadi, D. Carney, et al. Aurora: A new model and

architecture for data stream mgmt. The VLDB Journal,

12(2):120–139, Aug. 2003.

[6] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,

K. Ito, R. Motwani, U. Srivastava, and J. Widom.

STREAM: The Stanford Data Stream Management Sys-

tem, pages 317–336. 2016.

[7] A. Arasu, S. Babu, and J. Widom. The cql continuous query

language: Semantic foundations and query execution. Tech-

nical report, Stanford InfoLab, 2003.

[8] C. Balkesen, N. Tatbul, and M. T. Özsu. Adaptive input ad-

mission and management for parallel stream processing. In

Proceedings of the 7th ACM International Conference on

Distributed Event-based Systems, DEBS ’13, pages 15–26,

2013.

[9] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,

and K. Tzoumas. Apache flinkTM: Stream and batch pro-

cessing in a single engine. IEEE Data Eng. Bull., 38(4):28–

38, 2015.

[10] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and

P. Pietzuch. Integrating scale out and fault tolerance in

stream processing using operator state management. In

Proc. of the 2013 ACM SIGMOD, SIGMOD ’13, pages 725–

736, 2013.

[11] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,

U. Cetintemel, Y. Xing, and S. Zdonik. Scalable Distributed

Stream Processing. In CIDR 2003 - First Biennial Confer-

ence on Innovative Data Systems Research, Asilomar, CA,

January 2003.

[12] I. Gartner. Technology research, gartner, inc. http:

//www.gartner.com/newsroom/id/3598917, 2017. [Online;

accessed 27-April-2017].

[13] B. Gedik. Partitioning functions for stateful data paral-

lelism in stream processing. The VLDB Journal, 23(4):517–

539, 2014.

[14] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,

S. Mittal, J. M. Patel, et al. Twitter heron: Stream process-

ing at scale. In Proc. of the ACM SIGMOD, pages 239–250,

2015.

[15] M. A. U. Nasir, G. D. F. Morales, D. Garćıa-Soriano,

N. Kourtellis, and M. Serafini. The power of both choices:

Practical load balancing for distributed stream processing

engines. CoRR, abs/1504.00788, 2015.

[16] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Dis-

tributed stream computing platform. In 2010 IEEE In-

ternational Conference on Data Mining Workshops, pages

170–177, Dec 2010.

[17] S. A. Shaikh, Y. Watanabe, Y. Wang, and H. Kitagawa.

Smart query execution for event-driven stream processing.

In 2016 IEEE BigMM, pages 97–104, April 2016.

[18] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous

queries over append-only databases. In Proc. of the 1992

ACM SIGMOD, SIGMOD ’92, pages 321–330, 1992.

[19] W. Tracking and Monitoring. Wildlife Act. http://

wildlifeact.com/, 2017. [Online; accessed 17-July-2017].

[20] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load dis-

tribution in the borealis stream processor. In Proceedings

of the 21st International Conference on Data Engineering,

ICDE ’05, pages 791–802, 2005.

[21] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Dis-

cretized streams: An efficient and fault-tolerant model for

stream processing on large clusters. In Proc. 4th USENIX

Conference on Hot Topics in Cloud Ccomputing, Hot-

Cloud’12, pages 10–10, Berkeley, CA, USA, 2012.

