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Abstract Several studies have shown that social bots might have impacts on various important areas of our society

such as influencing the outcome of elections, the economy, or creating panic in time of crisis. Consequently, there is

a growing need to develop and strengthen defense mechanism against these entities. So far, existing methods rely

on users’ global information, such as profile information, network-related, and from the text content only syntactic

information have been used. In this paper, we propose a defense mechanism against social bots on Twitter, a

neural network model that incorporates metadata features and semantic information, pairwise tweet similarities

and ngram features from a user’s content to differentiate genuine users from social bots. Our model outperforms

baseline systems in three publicly available datasets.．
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1 Introduction

A recent study [3] suggests that social bots (social media

accounts controlled algorithmically by software to generate

content and interact with other users, automatically) may

have played an important role in the 2016 U.S presidential

election. An analysis of election-related tweets showed that

bots produced near one-fifth of the entire conversation. Ear-

lier, during the 2010 U.S midterm election, social bots were

used to support some candidates and defame their opponents

[30]. These kinds of incidents are not particular only to U.S

elections’ arena, similar patterns have also been observed in

other countries as well [13; 31; 19].

Outside of politics, there are also several reported impacts

of social bots. For instance, bots have been associated with

causing panic during a time of crisis by disseminating false

and unverified information [35]; affecting the stock market by

generating a vivid discussion about a company which created

an apparent public interest [6].

As result of a widespread use of social media services, they

have become a crucial data source in various academic re-

search. Several studies concerned with correlating real-life

events with observations made from social media data have

been published. From detecting earthquakes [32; 12], elec-

tion outcomes [25; 21] to disease outbreaks [34; 2; 8]. In addi-

tion, [36] estimation places social bot population on Twitter

between 9% to 15% of total active users. Therefore, con-

tents generated by bots might undermine a useful predictions

made from SNS data. Consequently, there is a growing need

Figure 1: Overview of the proposed method against previous

methods based on many complex features. Some of the features

require much time to obtain. Especially network and friend fea-

tures are inconsistent. In contrast, the proposed method focused

mainly on text-oriented features: semantic and content features,

which are stable and easy to obtain.

to develop and strengthen defenses against these entities.

However, detecting bot is one of the most daunting tasks

in social media analysis [13]. The challenge is understand-

ing what modern bot can do. Bot have evolved from easily

detectable ones which performs mainly one type of activity,

such as posting or re-tweeting automatically, to increasingly

sophisticated ones. Now the boundary between what consti-

tutes human-like and bot-like behavior has become fuzzier



[14].

Most of the previous work on bot detection fall in to two

perspectives. First, network-based methods in which the de-

cision is drawn from the users network analysis, with the

assumption that social bots tend to be mostly connected to

other bots [39; 6]. However, recent work show [29; 4] that ad-

vanced social bots may successfully be connected to humans

making them impossible to be detected solely on network-

based assessments. Second, machine-learning schemes are

trained with language-based, and other features (extracted

from users’ tweets and metadata) to capture users’ behav-

ioral patterns in order to differentiate real users from so-

cial bots. However, language-based features used in previous

work were mostly syntactic inherent features, and there is

still much to be explored in semantic features.

In this paper, we propose a defense mechanism against so-

cial bots on a social network service, Twitter, that leverage

nuances in semantic features from a user’s timeline tweets

combined with tweet similarity, n-gram features and meta-

data based features. Figure 1 illustrates the overview of the

proposed method against previous methods based on many

complex features. Some of the features require much time to

obtain. Especially network and friend features are inconsis-

tent. In contrast, the proposed method focused mainly on

text-oriented features: semantic and content features, which

are stable and easy to obtain, combined with users’ metadata

features. The contributions of the paper are summarized as

follows:

• We propose a bot detection focused on semantic and

content features, which are simple statistics-based features

to overhead computational complexity.

• We construct CNN (Convolutional Neural Network)

models that incorporates semantic features together with

tweet similarity, n-gram features and metadata based fea-

tures.

• The experiments conducted with publicly available

datasets show that the proposed model outperform baseline

models.

• Our results show that we can improve performance

from a base model that uses only semantic features and meta-

data features by adding other features. This might moti-

vate other researchers to consider adding semantic features

to their models.

2 Related Work

2 1 Bot Detection

Since the early days of social media, several research on

automatic identification of non-genuine users on social me-

dia network have been conducted [39; 11]. Most of the work

done in this area fall into two categories: network-based and

feature-based decision.

On network-based bot detection, the decision is based on

social graphs analysis. For example, Sybil （注1）Guard [39]

assumes that non-Sybil region, region bounding human-to-

human-established trust relation, is fast mixing and Sybil

admission to the region is based on admission control proto-

col. SybilRank [6] assumes that connection between users is

based upon the trustworthiness among then, consequently,

Sybil accounts show less connectivity to real users and more

to other Sybils to appear trustworthy. However, sophisti-

cated bots might gain trust of real users [29; 4], and to be

able to penetrate their communities, making them impossible

to be spotted solely by network-based assessments through

trust assumption [14]. Therefore, other aspects should be

considered.

On feature-based detections, machine-learning schemes are

trained to capture users’ behavioral patterns and meta-data

in order to differentiate real users from social bots. [37] and

[1] focus on the detection of spam tweets, which optimizes

the amount of data that needs to be gathered by relying

only on tweet-inherent features. [36] leverage more than

one thousand features distributed in six categories (user-

based, friend, network, temporal, content, and sentiment fea-

tures) obtained from users’ metadata, mentions and timeline

tweets. [10] show that natural language text features are ef-

fective at separating real users from social bots. However,

content and language features extracted from tweets text in

the previous works [36; 10; 37] were mostly syntactic inherent

features.

2 2 Chat Bot

In Natural Language Processing (NLP) context, the main

goal is to realize natural conversation instead of the bot de-

tection. Most current bot engines are designed to reply to

user utterances based on existing utterance-response pairs

[38]. In this framework, to capture the relevance between

utterance and response is fundamental. Then, the relevance

is calculated by the framework’s ability to retrieve the most

relevant pairs from the conversation database (retrieval ap-

proach), or generate the response to the given utterance (gen-

erative approach). Although mostly the target relevance

is limited to the short scope, usually, a single utterance-

response pairs, our proposed method handle another wider

relevance of the entire tweets (Section 3.2).

3 Model

We formulate the task of automatically identifying non-

genuine users on social media as follows: given a user u’s

posts (timeline tweets) Xu = {x1, x2, ..., xn}, our goal is to

（注1）：Social bots are also known as Sybils



Figure 2: visual illustration of the proposed model

find Y → {0, 1} = {human, bot} for the user such that:

Y ∗ = argmax
Y

P (Y |Xu)

Representation of our model is illustrated in Fig. 2. This

model is slight alteration of a shallow CNN for sentence clas-

sification tasks [22; 40] to accommodate basic features, tweet

similarity and n-gram lengths. Given a sequence of n tweets

Xu from a given user u, we apply it in three different parts.

First, we compute word embedding from the concatenation

of all tweets (Section 3.2); second, we compute basic features

(Section 3.1), then pairwise tweet similarity from all tweets

(Section 3.3), and lastly, we compute several statistics about

lengths of different classes of n-gram (Section 3.4).

The word embedding layer is followed by a convolution

layer comprised of several filters of different sizes (3, 4 and 5),

but with the same width as the dimension of the embedding

vectors. Every filter performs convolution over embedding

matrix, producing feature map. Next, we run the feature

map through an element-wise non-linear transformation, us-

ing Rectified Linear Unit (ReLU) [23]. Then, applying 1-max

pooling [5], then we extract the maximum value from each

feature map. We concatenate all extracted values from fea-

ture map together with features from basic, pairwise tweet

similarity and n-grams lengths. We then feed all features to

a full connected SoftMax layer for final output. Dropout [17]

is used as a mean of regularization.

The aim of this study is to show the contribution of se-

mantic features in spotting bots when combined with basic

features, tweet similarity and n-gram features obtained from

users’ tweets.

3 1 Basic Features

Basic features mostly comprise those that are extracted

from users’ metadata and some from tweets. For a given

Url average vs following Profile length vs following

Std vs cof. of variation of tweet

similarity
Std vs mean of tweet similarity

Std of 1-gram length vs median

of 3-gram length

Std of 1-gram length vs median

of 2-gram length

Figure 4: Distribution of some basic, similarity and ngram fea-

tures from a sample of DATAHP

user u, we extract 9 basic features as follow: number of fol-

lowers (number of users that follow u); number of following

(number of users that u follows); ratio between the num-

ber of followers and the sum of the number of followers and

following; number of tweets authored by u; age of u’s ac-

count in years; length of u’s profile description; length of u’s

screen name; average number of URL and average number of

hashtags (both relatively to the number of analyzed tweets).

Fig. 4 shows the distribution of the number of followings

relative to URL average (a), and relative to the length of

profile description (b) from honeypot dataset (see Section

4.1). We can observe that most genuine accounts, those be-

longing to real people, followed less accounts and have URL

average below 2, in contrast, bots have higher number of fol-

lowings. Features extracted from users’ meta-data have been

successfully applied to classify users on Twitter [9; 36; 37].

However, advanced bots can camouflage human-like meta-

data information which decrease the effectiveness of these

features. Thus, we combine basic features with much more

sophisticated features to counter bots’ evasive tactics.



3 2 Word Embedding

Word embedding models enable us to represent a text in

a dense vector of real numbers, one per word in a vocab-

ulary. On the contrary to vector space models [33], word

embedding are built on the notion of distributional hypoth-

esis [16], which assumes that words that are used and occur

in the same context are semantically related to each other.

Thus, word embedding entails efficiently encoding seman-

tic information of a text or document. Therefore, we take

X ′
u = x1+x2+ ...xn as a concatenation of n tweets of a given

user u and, we produce word embedding of 300 dimension

that capture semantic features from that a user’s content.

3 3 Pairwise Tweet Similarity

A recent study [10] has shown that content from pure gen-

uine users tend to be very dissimilar in average compared

to content produced by automatons. Since we assume that

bots generate tweets with similar structure and minor modi-

fications from one tweet to another, we design the feature to

capture the tweet similarity based on that assumption.

We introduce three features that enable us to quantify the

degree of similarity of a certain set of pairs of tweets from a

given user u: mean of pairwise tweet similarity (µu), stan-

dard deviation of pairwise similarity (δu) and coefficient of

variation (cvu) of pairwise tweet similarity. Being |x| the

number of character in a tweet x, m the number of matching

characters between two tweets (x1, x2) and tr the number of

transpositions needed to change one tweet to another. And

based on Jaro Similarity [20], the similarity between a pair

of tweets, Sim(x1, x2), is given by:

Sim(x1, x2) = {0 ifm=0
1
3
( m
|x1|+

m
|x2|+

m−tr
m

) otherwise

The mean µu of all pairwise tweet similarities on a sample

of n tweets of a given user u is calculated by:

µu =
2

n(n− 1)

∑
xi,xj

Sim(xi, xj)

Being δu the standard deviation of pairwise tweet similarity

on a sample of n tweets of a given user u, where:

δu =

√
2
∑

xi,xj
(Sim(xi, xj)− µ)2

n(n− 1)

Then, the coefficient of variation of pairwise tweet similarity

cvu of a given user u is calculated as cvu = δu/µu.

Fig. 4(c) and (d) illustrate the distribution of the three

similarity features. In general bot accounts have very simi-

lar content compared to human accounts, but with also high

standard deviation. However, similar to Fig. 4(a) and (b),

Fig. 4(c) and (d) show that some bots are clustered together

or close to genuine accounts. Therefore, similarity or basic

features alone are not enough to separate bot accounts from

genuine accounts in some instances.

3 4 n-gram Lengths

n-gram (Gn) is a contiguous sequence of n items from a

given sample of text. n-gram models are used over a broad

range of tasks in Natural Language Processing such as text

categorization [7], machine translation [26; 15], and speech

recognition [18]. In social bot detection task, [37] used a

combination of tf (term frequency) and tf-idf (term frequency

times inverse document frequency) of unigram (1-gram), bi-

gram (2-gram), and tri-gram (3-gram). They achieved their

best results by combining user features (e.g, length of profile

name, length of profile description, etc) with n-gram features

which showed to be very effective. However, computing tf

and tf-idf can be computationally expensive on large dataset.

Therefore, we take a different approach by computing several

statistics from the number of characters in n-grams (length

of n-gram).

We use word-based n-gram, e.g., for the given sentence

“<user> it should be a good time !”, we compute the fol-

lowing: 1-gram (G1) ={ “<user>”, “it”, “should”, “be”,

“a”, “good”, “time”, “!”}; 2-gram (G2) = {“<user> it”,

“it should”, “should be”, “be a”, “a good”, “good time”,

“time !”}. Being |Gn| = {len(g1), len(g2), ..., len(gk) } a

sequence of lengths of n-gram of class n (we compute n-

gram of n = 1 up to n = 5) from a given user’s tweets. As

for 1-gram (G1) of the above example, it would be |G1| =
{6, 2, 6, 2, 1, 4, 4, 1}. From |Gn| the following five statis-

tics are determined: median(|Gn|), mean(|Gn|), std(|Gn|),
kurtosis(|Gn|) and skewness(|Gn|), totaling 25 features

(five statistics for |G1| to |G5|). Fig. 4(e) and (f) shows

the distribution of some ngram features. Human accounts

are clustered in the middle while bot accounts are spread.

Table 1: Performance of our models on different datasets

Model DATAV AROL DATAHP DATAMIX

BLV AROL [36] 0.890 AUC 0.960 AUC 0.940 AUC

BLCLARK [10] - 0.960 AUC -

BLWANG [37] - 0.940 prec -

- 0.940 rec -

BF+WE 0.873 AUC 0.984 AUC 0.954 AUC

BF+WE+SIM 0.889 AUC 0.986 AUC 0.956 AUC

BF+WE+NG 0.884 AUC 0.985 AUC 0.954 AUC

BF+WE+SIM+NG 0.914 AUC 0.988 AUC 0.960 AUC

- values are not available.

prec and rec indicate precision and recall, respectively.

4 Experiments

We empirically investigated the proposed model by using

two standard datasets, which were often utilized in previous

works, and we also tested with a mixed dataset. This section



initially describes the datasets used to train and evaluate our

models. We then give implementation details of our models

and the baseline models that we compared with. At last, we

show the results followed by features importance and error

analysis.

4 1 Dataset

We evaluate our models with two publicly available

datasets (DATAHP and DATAV AROL ) and the combina-

tion of them DATAMIX , respectively.

• DATAHP : this dataset is from the social honeypot

experiment [24]. It consists of 22K content polluters (bots)

with over 2 million tweets and 19K legitimate users with

over 3 million tweets. For our study, we randomly selected

7K bots and 3K genuine users, and 200 tweets for each user.

• DATAV AROL: this is a manually labeled dataset as

in [36]. It consists of about 2500 binary labeled twitter ac-

counts (0 for genuine or human-controlled accounts and 1

for bot-controlled accounts). We ran our crawler in January

2018 and collected 200 tweets from each user’s timeline to

reduce the crawling time. Note that 200 tweets is the maxi-

mum number of tweets per request under the standard Twit-

ter API（注2） as of January 2018. Since some accounts were

deleted or had changed their privacy settings from public

to private as of time of crawling, the number of successfully

crawled accounts reduced to about 2000 (about 600 bots and

1400 humans).

• DATAMIX : we combined together the two datasets

(DATAHP and DATAV AROL), resulting in the dataset with

about 12K users.

We ran a series of tweet anonymization process where

we substituted all mentions and links with tokens ¡user¿

and ¡link¿ from all tweets, respectively. Using available li-

brary（注3）, we removed all non-English tweets, and only ac-

counts that remained with more than 20 messages were con-

sidered for further analysis. For additional data sanitization,

the cleaning method from [22] was applied to the datasets.

4 2 Baseline

To evaluate the proposed models, we compared our results

with three baseline systems.

• BLV AROL (Varol et al., 2017) [36]: a content-based

framework that leverages more than a thousand features dis-

tributed in 6 categories: I. user-based features - extracted

from user metadata (e.g, screen name length, number of dig-

its in screen name, accounts age, etc); II. friend-based fea-

tures - extracted from language use, local time, popularity,

etc; III. network-based features - extracted from user’s net-

work structure; IV. temporal features - extracted from user

（注2）：https://developer.twitter.com/en/docs.html

（注3）：https://github.com/saffsd/langid.py

activity, such as average rates of tweet production over var-

ious time periods and distribution of time intervals between

tweets; V. Content and language features - extracted from

tweet text, mostly syntactic features such as POS tagging

usage, statistics about number of words in a tweet, etc. VI.

sentiment features - obtained from measurement of mood

and emotions conveyed in the tweets. They trained a set of

machine learning schemes with subset of 100 features and

reported that random forest yielded the best result.

• BLCLARK (Clark et al., 2016) [10]: a machine-

learning approach based on natural language text features to

provide the base for identifying non-genuine accounts. They

used three content-based features: I. average pairwise tweet

dissimilarity; II. word introduction rate decay parameter and

average number of URLs per tweets;

• BLWANG (Wang et al., 2015) [37]: a machine learn-

ing approach that focuses on optimizing the amount of data

that needs to be gathered by relying only on tweet-inherent

features. They applied three feature categories: I. user fea-

tures - similar of those used in BLV AROL; II. content fea-

tures including n-gram based features such as tf (term fre-

quency) and tf-idf (term frequency times inverse document

frequency) of unigram (1-gram), bi-gram (2-gram), and tri-

gram (3-gram). III. sentiment features such as automatically

and manually created sentiment lexicons from the tweet text.

4 3 Implementation Setup

Our model is implemented in tensorflow on top of publicly

available（注4） implementation of CNN for sentence classifica-

tion as presented by [22].

4 3. 1 Models’ settings

To initialize our word embedding of dimension 300,

word2vec pre-trained embeddings [28] were used. For convo-

lutions, we set the number of filters to 128 for each filter-size

of 3, 4, and 5. We applied ‘Dropout’ to the input to the

penultimate layer with probability of 0.5. Optimization is

performed using stochastic gradient (SGD) with initial learn-

ing rate 0.005 and 0.0001 for early stopping.

4 3. 2 Models’ variants

Four different variations of the proposed model, start-

ing from one layer CNN with word embeddings [22] com-

bined with basic features (BF + WE model) were imple-

mented. To the BF + WE model either/both pairwise

tweet similarity (SIM) (explained in Section 3.3) or/and n-

gram lengths (NG) (described in Section 3.4), creating BF

+ WE + SIM model, BF + WE + NG model, and

BF + WE + SIM + NG model, respectively. It took up

to 3 days to finish a 5-fold cross validation.

（注4）：https://github.com/dennybritz/cnn-text-classification-tf



Table 2: McNemar chi-squared test with Yates correction of 1.0

of the BF + WE model against: BF + WE + SIM model (a); BF

+ WE + NG model (b); BA + WE + SIM + NG model (c). On

about 3.5K users assembled from original honeypot dataset. Both

models were trained with DATAHP .

(a) BF + WE + SIM model

BF + WE

Correct Incorrect

BF + WE + SIM Correct 3125 68

Incorrect 40 194

p-value = 0.0090

(b) BF + WE + NG model

BF + WE

Correct Incorrect

BF + WE + NG Correct 3124 68

Incorrect 41 194

p-value = 0.0124

(c) BF + WE + SIM + NG model

BF + WE

Correct Incorrect

BF + WE + SIM + NG Correct 3126 68

Incorrect 39 194

p-value = 0.0065

4 4 Results

Table 1 illustrates the results of our models’ assessments

through 5-fold cross validation.

DATAHP andDATAMIX : The BF +WEmodel, which is

just one layer CNN with pre-trained word embeddings from

users’ timeline tweets plus basic features, performs well on

DATAHP and DATAMIX compared to the baseline sys-

tems. As we expected, adding more features (SIM, NG,

and SIM + NG) to the BF + WE model improves signif-

icantly performance over the three datasets. This suggests

that these features have comparatively low correlation among

them. We achieved our best results on all datasets when com-

bining all features, which produces BF + WE + SIM + NG

model (see fig. 2).

DATAV AROL: Despite not achieving almost-ceiling re-

sult like on DATAHP , our models performed fairly well on

DATAvarol too, yielding a state of the art result as well. It

is important to state that this dataset is more recent com-

pared to DATAHP and possibly it contains more advanced

bots. In addition, it has only 2K users and of those 600 are

bots which might not have been enough data to train our

models to understand underlying differences between bots

and human users. In summary, all our models performed

well in all datasets, and the model that combines all features

outperformed the three baselines.

4 5 Feature Contribution

In order to understand better the improvement of perfor-

mance over the BF + WE model when adding more features

(see Section 4.4), we employed McNemar test for paired nom-

inal data [27]. This test is appropriate for binary classifica-

tion tasks. Since we compare the results of the algorithms

when applied on the same datasets.

We assembled new data of about 3.5K users from original

Honeypot dataset (see Section 4.1) completely exclusive with

DATAHP . We next tested all models with this dataset and

compared the models’ outcomes to those of the BF + WE

model. Using McNemar chi-squared test with one degree of

freedom under the null hypothesis (p-value = 0.05) that the

models have a negligible decrease of error rate, i.e., it would

be determined that there is no significant performance im-

provement from the BF + WE model if the p-value from the

test is equal or greater than that of the null hypothesis.

Table 2(a) shows the McNemar chi-squared test with Yates

correction of 1.0 of the BF + WE model against the BF +

WE + SIM model. The p-value of the test is equal to 0.009

(less than the p-value associated with the null hypothesis)

which proves that adding pairwise tweet similarity features,

indeed, we gain an evident performance improvement. Table

2(b) presents the p-value of the test against the BF + WE

+ NG model is equal to 0.0124, suggesting the significance

to consider pairwise n-grams lengths features with the BF +

WE model. Similarly, we can interpret the result of the BF

+ WE + SIM + NG model as shown in Table 2 (c).

Analogous to what we have observed in Section 4.4, Table

2(c) shows that the greatest performance improvement from

the BF + WE model is gained when applying the BF + WE

+ SIM + NG model which combined all the features, and

produced the lowest p-value among all the three McNemar

tests.

4 6 Error Analysis

we conducted some empirical analysis in order to gain more

insights on our model outputs. As stated earlier, in recent

years social bots have become sophisticated enough to gener-

ate human-like content [14]. Thus, discriminating bots from

human users is not a straightforward task. However, from

the analysis of our models’ inputs-outputs we observed that

in general our model performed well even in a presence of

non-obvious bots. Table 3 shows a sample of our model

output on two datasets, DATAvarol and DATAHP .

4 6. 1 False Positive

Our models failed to correctly classify users labeled as hu-

man but exhibited automated behaviour, bot-like behaviour.

Some of these accounts belonged to human users but most of

their content were generated by connected applications such

as Spotify or Youtube. We also observed cases of miss label-



Table 3: Excerpt of users’ tweets with their respective predicted and gold standard (denoted Gold) labels. The first three users are from

DATAHP and the latter three users are from DATAV AROL.

User ID Tweet ID Tweets Predicted Gold

u1 t11 we do not plant knowledge when young , it will give us no shade human bot

t12 he was posting him up user user the cavs did n’t have anybody that could help lebron

u2 t21 why can’t you just be straightforward ? <USER> find joy in the ordinary bot bot

t22 i have so many thoughts <URL> firstly, <USER> is great wish he could do all of

u3 t31 hello <USER> we have arrived ! ! ! ! <USER> friday fun fact of the day a ford truck is sold human human

every 41 seconds ford150 <USER> the new chrysler

t32 right amp center last spring concert so bittersweet qingatw if you can do high school

u4 t41 RT <USER>: #NowPlaying on #Spotify <USER> ”One Night” <URL>... bot human

t42 RT <USER>: #NowPlaying on #Spotify Ayron Michael ”One Night” <URL> <URL>..

u5 t51 <USER> why is dengue spray used in presence of students in school bot bot

t52 afer attock students at jehlum fainted due to effect of den <USER>

u6 t61 i finally get a saturday morning to sleep in and i’m awake at 8 am human human

t62 <USER> mike i can’t believe it sully oh mike mike i’m on a t shirt

ing on the dataset, e.g., user u4 on table 3. Accounts labeled

as human/bot, although double check of their content and

profile revealed that they are more likely to belong to the

opposite label.

4 6. 2 False Negative

Similar to false positive, our models also triggered false

negative for users labeled as bot and yet, a checking on their

tweets, meta-data and overall activity showed that these ac-

counts might be human accounts(e.g. user u1 on table 3).

5 Conclusions

This paper proposed an approach to classify Twitter users

into social bots and human users with a CNN model con-

sidering features obtained from their texts and metadata.

Given a twitter user’s tweets the model captures the seman-

tic features through a pre-trained word embedding, find the

content similarity by pairwise tweets comparison, statistics

about lengths of various class of n-gram and extract features

from the user’s metadata. Our results shows that pairwise

tweet similarity and n-gram features when combined with se-

mantic features improve performance over the basic + word

embedding model. Our model outperformed the baseline sys-

tem, yielding state-of-the-art results three datasets.

In future work, we plan to consider more users information

such as network, the temporal pattern of content generation,

emotions or mood conveyed by the user’s content. We also

plan to create a large new dataset containing more recent

bots.
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