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Abstract Mobile wireless sensor networks (WSNs) are facing threats from malicious nodes which disturb packet

transmissions, leading to the poor performance of mobile WSNs. Existing studies provided some methods, such

as decision tree based classification, to detect these malicious nodes. However, these malicious nodes are assumed

to follow only pre-defined attack models and do not have any learning ability. This limits the malicious nodes in

regard of development of machine learning technologies. For this reason, in this study, we design a reinforcement

learning based malicious nodes, and define a novel observation space and a sparse reward function for them. We also

propose an adaptive learning method to detect these malicious nodes. Extensive experiments show that compared

with existing attack models, our malicious nodes can make networks perform worse while not being detected. We

also investigate the performance of our detecting method and confirm that our method significantly outperforms

the state-of-the-art methods in terms of detection accuracy and false detection rate.
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1. Introduction

Driven by extensive growth of Internet of Things (IoT) and

artificial intelligence (AI) technologies, as an important ap-

plication of them, a mobile wireless sensor network (WSN)

has demonstrated its feasibility, which requires long range

communications and capability of monitoring. However, due

to the self-organized characteristic, malicious nodes can eas-

ily join a mobile WSN. That is, mobile WSNs are inherently

vulnerable to malicious nodes, and the malicious nodes dis-

rupt communications in mobile WSNs, causing packet trans-

mission failures; all of which presents security challenges to

mobile WSN environments.

Existing studies have proposed a variety of routing at-

tack models [6]. These attack models mainly aim at dis-

turbing packet transmissions and causing redundant traffic.

One of the most aggressive attacks, grey hole attack [22],

has been proved to have the ability to destroy the rout-

ing procedure and data transmissions of a sensor network.

Rule-based countermeasures have been proposed for avoid-

ing attacks and/or detecting grey hole attacks in mobile

WSNs [25], [26]. However, the existing grey hole attack fol-

lows only pre-defined routines, which means that they cannot

modify their attack patterns. This leads to the result that

the malicious nodes are easy to be detected by correspond-

ing countermeasures [1], [24]. Moreover, the assumption that

malicious nodes have no learning ability is extremely unreal-

istic in a world with rapid development of machine learning.

Thus, this study assumes that malicious nodes have learning

ability, and they can learn from the countermeasures to avoid

being detected. Similarly, the above attack countermeasures

cannot deal well with an attack model which is capable of

learning, because preparing a static rule for an attack model

which can change its behavior is impractical. Therefore, the

attack countermeasures should also be have learning ability.

Contribution. To address the problem of designing an grey

hole attack model with learning ability, we utilize reinforce-

ment learning to let the malicious nodes learn by themselves

in a mobile WSN. In our method, malicious nodes obtain

a positive reward when they deteriorate the performance of

the mobile WSN. However, if these nodes behave too mali-

ciously, they may be easily detected by a countermeasure of

the mobile WSN. We assume that they receive a large nega-

tive reward if they are detected within a time threshold. In

a large number of episodes, the malicious nodes will finally

learn how to perform maliciously as much as possible while

not being detected. In addition, we design a method that

robustly detects the above attack model. Over a certain pe-

riod, the detection method is updated adaptively to find the

rule of attack detection. The principal contributions of our

work are:

• We design a novel reinforcement learning based grey

hole attack model in mobile WSNs. To our knowledge, this is

the first work that applies reinforcement learning algorithms

to build a smart grey hole attack model in mobile WSNs.

• We propose a method for discrete-time adaptively up-



dating the countermeasure. This method can update coun-

termeasures to detect our novel attack model.

• We conduct extensive experiments to investigate the

performance of our attack model and our corresponding

countermeasure. From the results of these experiments, we

confirm that our attack model is hardly detected by exist-

ing countermeasures. Moreover, our countermeasure outper-

forms the state-of-the-art.

Organization. We review related works in Section 2. Sec-

tion 3 introduces the assumption in this paper. Our proposed

method is described in Section 4. The experimental results

are illustrated in Section 5. Section 6 summarizes our con-

clusion.

2. Related work

Reinforcement learning. Reinforcement learning (RL)

has become an increasing popular research area due to its

effectiveness in various tasks. As a model-free reinforcement

learning technique, the Q-learning algorithm can derive the

optimal strategy with probability one if all the feasible ac-

tions are repeatedly sampled over all the states in a Marko-

vian decision process [20]. Mnih et al. [17] firstly successfully

approximated Q function with a deep convolutional neural

network, and enabled their agent to beat a human expert

in several Atari games. Later on, RL algorithms have been

applied to many WSN-related applications such as schedul-

ing of energy harvesting node [3] and detecting the rough

edge of a VANET [15]. In the domain of WSN security, Li

et al. [14] used game theory to protect packet transmissions

against smart attacks. Xiao et al. [27] utilized RL against

smart jamming. These works assume that malicious nodes

follow existing patterns, and the proposed methods are only

effective for pre-defined attack models. Therefore, for a ma-

licious node that can learn, simply extending these existing

methods is not trivial.

Grey hole attack model and countermeasures in

WSNs. Security of mobile WSNs is a challenging issue, and

many existing studies concerned about it. Existing studies

have proposed plenty attack models [13]. Grey hole attack is

a special one among them. In the grey hole attack model,

malicious nodes can selectively (randomly) forward packets

or reply requests to drag routes to themselves. The ordi-

nary grey hole attack is a smart version of the famous black

hole attack [23], and it is hard to be detected by ordinary

reputation based detection methods [22]. Some works have

developed techniques for avoiding the attack with multipath

approaches [26], analyzing the impact of the attack [25], and

preventing the attack [21]. However, the existing grey hole

attack model and corresponding countermeasures do not as-

sume that the malicious nodes can equip with learning abil-

ity.

3. Assumption

3. 1 Network model

Our network environment is assumed to be a mobile WSN

consisting of n wireless nodes with unique identifiers (i.e.,

node ID). These nodes can move without restriction, while

directly communicating with other nodes if they are within

the communication range. We assume that all nodes have

the same communication range, and if a given node is within

the communication range of other nodes, it is a neighboring

node of them.

As a routing protocol, AODV [19], which is a standard

routing protocol in mobile WSNs, is employed. In AODV,

when a source node s wants to send a data packet to a des-

tination node d, if there is no valid route existing in routing

table of s, s broadcasts a route request (RReq) to create a

packet transmission route, and this message is transmitted

by some intermediated nodes. When node d receives this

RReq, it sends a route reply (RRep) toward s to create a

valid route, then data packet will be transmitted through

this route between s and d. To maintain the route, route er-

ror (Rerr) and hello messages are also utilized. When a node

detects a link failure in an active route, it sends an Rerr

to notify other nodes of the link failure. Each node checks

whether it has sent a message or not within an interval called

hello interval. If not, it broadcasts a hello message to notify

other nodes of its existence (see [19] for other details).

3. 2 Mobile nodes

In this paper, we consider a mobile WSN contains two

categories of nodes: malicious nodes, which do grey hole at-

tack, and normal nodes. We assume that each category of

nodes hold their own servers (respectively normal server and

malicious server) with machine learning functions. In ad-

dition, we assume that malicious nodes conspire together to

destroy the regular routing procedure and disturb the proper

data transmissions in a mobile WSN. Furthermore, equipped

with computation power, caching resources, and the mali-

cious server, these malicious nodes can use reinforcement

learning to learn not to be detected while executing mali-

cious behaviors. On the other hand, the normal nodes at-

tempt to update their detecting method to follow the latest

behavioral pattern of the malicious nodes. The normal nodes

work together to detect malicious nodes with a specific data

collecting method (e.g., flooding through the network).

3. 3 Deep Q-learning for malicious server

We assume that malicious nodes employ deep Q-learning

[17] as the reinforcement learning algorithm. Below we

present a brief summary of deep Q-learning.

Reinforcement learning deals with learning an optimal pol-



icy π∗ for an agent interacting in an unknown environment.

At each time step t, an agent observes the current state st

of the environment, decides on an action at according to a

policy π, and observes a reward signal rt. The goal of the

agent is to find a policy that maximizes the expected sum of

discounted rewards Rt

Rt =

T∑
t′=t

γt′−trt′ , (1)

where T is the time at which the episode terminates, and γ

∈ [0,1] is a discount factor that determines the importance of

future rewards. The Q-function of a given policy π is defined

as the expected return from executing an action a in a state

s:

Qπ(s, a) = E[Rt|st = s, at = a] (2)

Finally, the updating rule for the Q-values for an action se-

lection policy π is as follows:

Qπ(st, at) = (1− α)Qπ(st, at)+

α[Rt(st, at) + γmax
a

Qπ(st+1, a)]
(3)

where

0<α<1 (4)

is the learning rate. It has been proved that through suf-

ficiently large number of learning iterations, the Q-learning

algorithm converges and returns the optimal policy π∗ [11].

Instead of performing the Q-learning updates in an on-

line learning fashion, it is popular to use experience replay

to break the correlation between successive samples [2]. At

each time step, an agent experience (st, at, rt, st+1) is stored

in a replay memory, and the Q-learning updates are done on

batches of experiences randomly sampled from the memory.

In the training of the deep Q-learning agent, we assume that

malicious nodes share the same malicious server, so note that

the st and st+1 in one experience tuple (st, at, rt, st+1) are

the state and next state of a particular malicious node.

At every training step, the next action is generated by us-

ing an ϵ-greedy strategy: with a probability ϵ, the next action

is selected randomly, and with probability 1 − ϵ, the next

action is the best one obtained by the deep Q-learning algo-

rithm. In our method, we start with ϵ = 1 and progressively

decay ϵ.

4. Proposed method

4. 1 Overview

Here we describe the overview of our method. The method,

which is based on machine learning techniques, consists of

a training phase and a test phase. Figure 1 presents an

Training environment
(1) Malicious Server

state reward

fit select

DQN agent

action

(2) Normal Server

Instances

…

Classifier

update

Figure 1 Overview of the training phase of the proposed method.

(1) Malicious server monitors the mobile WSN, and uti-

lizes our method to obtain state and reward. Then the

malicious server updates the deep Q-learning agent and

selects an action. (2) Normal server collects instances

from the normal nodes then updates the classifier.

overview of the training phase of the proposed method. In

the training phase, we simulate various environments with

different environmental parameters, e.g., initial node po-

sitions, and train the malicious server with reinforcement

learning algorithms in an on-line manner, using data ob-

tained from the malicious nodes in the environments. Si-

multaneously, the normal server is also trained by the data

collected from the normal nodes. It is important to recall

that in the training phase, all the malicious and normal nodes

respectively share their own server. In other words, both the

servers can monitor the whole mobile WSN, and can utilize

all the data from their nodes because the training phase is

based on simulations.

The reason why we train servers on different network en-

vironments is derived from the fact that only training on a

single network environment is not general [10], i.e., the nor-

mal server may overfit the behavioral pattern of the malicious

nodes in a single network environment. For example, assume

that we have network environments A and B, and we trained

the normal server in network environment A. This would eas-

ily detect malicious nodes in network environment A because

the normal server fits the malicious data perfectly. However,

it may not work well in network environment B, as the nor-

mal server has no training data of network environment B.

In the test phase, each normal/malicious node is equipped

with a fixed normal/malicious server obtained in training

phase. Normal nodes use the trained normal server to detect



Table 1 Information observed by each node

Information Definition

NReqRec # RReq overheard from one neighbor

NRepRec # RRep overheard from one neighbor

NRepSen # RRep sent to one neighbor

NRerRec # Rerr overheard from one neighbor

NRerSen # Rerr sent to one neighbor

NHelRec # hello messages overheard from one neighbor

NDatRec # data packets overheard from one neighbor

NDatSen # data packets sent to one neighbor

TReqRec Total # RReq overheard by observing node

TReqSen Total # RReq sent by observing node

TRepRec Total # RRep overheard by observing node

TRepSen Total # RRep sent by observing node

TRerRec Total # Rerr overheard by observing node

TRerSen Total # Rerr sent by observing node

THelRec Total # hello messages overheard by observing node

THelSen Total # hello messages sent by observing node

TDatRec Total # data packets overheard by observing node

TDatSen Total # data packets sent by observing node

ActNei Active # neighbors met from start

TPckSen Total # packets sent

TPckRec Total # packets received

malicious nodes, whose action is decided by their malicious

servers. Note that each server is no more updated in the

test phase because, (i) for the normal server, the category

of a neighboring node is unknown, and (ii) for the malicious

server, the reward is unknown. Therefore, in the test phase,

both malicious and normal nodes do not need to collect data

from other nodes.

Moreover, we assume that both malicious and normal

nodes observe the behavior of its neighboring node. Before

we describe the data collected for the normal and malicious

servers, we present the information related to the neighbor-

ing node observed by each node (Table 1). Note that, in

AODV, messages are transmitted by broadcasting, and thus

observing nodes can overhear the messages.

4. 2 Smart grey hole attack model

Here we describe our smart grey hole attack. This novel

attack model is based on reinforcement learning. Malicious

nodes equipped with this attack model aim at disturbing the

routing and data transmission of a mobile WSN while not

being detected.

4. 2. 1 Ordinary grey hole attack model

Before we illustrate our smart grey hole attack model, we

first describe the details of ordinary grey hole attack model.

The ordinary grey hole attack model contains mainly two

parts. i) When a grey hole malicious node receives an RReq,

it may perform normally (follow the routing protocol of this

mobile WSN), or reply an RRep with one hop count, which

means that the malicious node states that it is near the des-

tination. ii) When the malicious node receives a data packet,

it may also perform normally, or just drop it. The percent-

age that the node performs normally or not is decided by a

malicious ratio (e.g., 50%).

However, this static pre-defined malicious ratio makes the

grey hole malicious nodes easily detected by some machine

learning based detection methods. Therefore, in this study,

we employ reinforcement learning to enable the malicious

node to learn the most proper behavior. The actions of our

smart grey hole attack model are the same as ordinary grey

hole attack model.

4. 2. 2 Overview of smart grey hole attack model

We describe the overview of smart grey hole attack model.

In the training phase, we run sufficient episodes of simula-

tions, and in each episode, we employ different network pa-

rameters. During each training episode, the malicious server

monitors the mobile WSN and employs our method to ob-

tain a reward and a state after a malicious node receives any

packet. The malicious server then updates itself, and selects

an action for this malicious node. When all malicious nodes

in the mobile WSN are detected or the simulation time goes

over the threshold, an episode ends.

In the test phase, each malicious node is installed with a

trained malicious server obtained in the training phase. The

malicious server of each node is no more updated. However,

it still utilizes our method to obtain state and selects action

for its malicious node.

4. 2. 3 State and reward engineering

As introduced in Section 3. 3, reinforcement learning uti-

lizes a series of tuples (st, at, rt, st+1) for updating the policy

of an agent. However, different from existing simple game-

like learning tasks (e.g., Cart-pole game from OpenAI Gym
（注1）), which have obvious state and reward declaration, and

Atari game missions, which can utilize convolutional neu-

ral networks to conveniently extract features from game pic-

ture frames, the malicious server does not have an existing

method to obtain state and reward from monitoring data.

Thus, we design a method that obtains the state and reward.

State engineering. Amalicious node observes a state, then

selects an action according to the decision of the malicious

server. To enable the malicious nodes to understand its sit-

uation, we design the state (as a vector to input into neural

networks) for the malicious nodes by extracting information

from the most recent received packets. In particular, we ex-

tract packet category ID and neighboring node ID. Packet

category ID shows the category of this received packet (e.g.,

RReq is 1 and RRep is 2), and node ID represents that ID

of the node who sends this packet. Note that the packet

（注1）：https://gym.openai.com/
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Figure 2 One hot encoding of node ID

category ID and the node ID are not numeric data, but cat-

egorical data. For instance, compared with node ID 3, node

ID 2 and node ID 8 have just the same differences. However,

if we just utilize these node IDs (2, 3, 8) as input of the neu-

ral networks, the neural networks of malicious server treat 2

more similar to 3 than 8 [7]. As a result, we employ one-hot

encoding [8] to encode the node ID and packet category ID,

for the purpose of appropriately processing categorical data.

Figure 2 illustrates our one-hot encoding for node ID. In a

mobile WSN of n nodes, the node ID k of a received packet

is transformed into a vector with length n, with the k − th

dimension of the vector is 1, and the rest is 0. The one-

hot encoding of packet category ID is the same as that of

the node ID. A malicious node can learn which neighbor-

ing node sends this packet, and learns the behaviors of its

neighboring nodes from these two settings.

However, the malicious nodes cannot recognize their sit-

uations clearly based only on these two states, because the

received packet category ID and neighboring node ID may

always be similar during the training simulation. Therefore,

we also extract ratios that can well describe the malicious

nodes’ situations. Table 2 presents a summary of states. In

this table, the first and second lines are the one-hot vectors

of packet category ID and neighboring node ID. Then we

calculate the connection between sent and received numbers

of each category of packet and total sent and received num-

bers. These ratios can not only represent the node density

(ActNeiRatio) near a malicious node, but also can illustrate

the packets sent and received frequency of a particular cat-

egory of packet. For example, if a malicious node sends too

many RReps, its RepTotSenRatio is extremely high. Under

such a situation, it will be soon detected by some machine

learning based detecting method. Consequently, this mali-

cious node will try to send fewer times of RReps not to be

detected. Moreover, another advantage of the state is that

Table 2 States of malicious nodes

States Definition

Packet category One-hot vector of most recently

received packet category ID

Neighbor node One-hot vector of most recently

received neighboring node ID

ActNeiRatio 1/ActNei

ReqTotSenRatio TReqSen / TPckSen

RepTotSenRatio TRepSen / TPckSen

RerTotSenRatio TRerSen / TPckSen

HelTotSenRatio THelSen / TPckSen

DatTotSenRatio TDatSen / TPckSen

ReqTotRecRatio TReqRec / TPckRec

RepTotRecRatio TRepRec / TPckRec

RerTotRecRatio TRerRec / TPckRec

HelTotRecRatio THelRec / TPckRec

DatTotRecRatio TDatRec / TPckRec

ReqRecTotSenRatio TReqRec / TPckSen

RepRecTotSenRatio TRepRec / TPckSen

RerRecTotSenRatio TRerRec / TPckSen

HelRecTotSenRatio THelRec / TPckSen

DatRecTotSenRatio TDatRec / TPckSen

ReqSenTotRecRatio TReqSen / TPckRec

RepSenTotRecRatio TRepSen / TPckRec

RerSenTotRecRatio TRerSen / TPckRec

HelSenTotRecRatio THelSen / TPckRec

DatSenTotRecRatio TDatSen / TPckRec

the values of these processed ratios are all between [0, 1],

which means our state design does not need normalization,

and can converge rapidly.

We finally concatenate one-hot vector of packet category

ID, one-hot vector of neighboring node ID, and extracted

ratios together as our state vector.

Reward shaping. The design of reward in reinforcement

learning is important because it describes how the agent

ought to behave. Therefore, we explicitly design the reward

for the malicious server.

Our smart grey hole attack model aims at i) dropping data

packets while ii) trying not to be detected. The result of

dropping data packets can be represented by how much the

transmission rate (total # of data packets received by desti-

nation node/total # of data packets sent by source node) is

lowered, and the result of trying not to be detected can be

represented as how long the malicious nodes keep not being

detected. As a result, the following rewards for shaping the

reward function of the malicious server are considered.

• Positive reward for lowering the transmission rate.

• Positive reward for not being detected before a pre-

defined time threshold.

• Negative reward for being detected.

Although we form the principle of our reward function, set-



ting magnitudes and frequencies of rewards is difficult, and

they often depend on applications. For instance, in Atari

Pong game, the rewards are bounded by −1 and +1, while

in Atari Mr. Pac-Man eating a single ghost can yield a re-

ward of up to +1600. To overcome this, we employ clipped

reward [18], where if the malicious nodes are all detected be-

fore the pre-defined threshold, the reward is −1. Otherwise,

the reward is +1. For lowering the transmission rate, clipping

all the rewards to +1 cannot show the decrease of transmis-

sion rate, so we bound the reward, as 1 − transmisson rate,

to reduce imbalance. We then add the positive and negative

reward as a final reward.

Note that in our setting, we utilize the sparse reward func-

tion. That is, the malicious server does not receive any non-

zero reward until an episode is done. Note that an episode is

done when i) all the malicious nodes are detected or ii) the

simulation time goes over the threshold. We finally summa-

rize our reward:

reward =



0 (not end)

1 + 1− transmissionrate (end &

not detected)

−1 + 1− transmissionrate (end &

detected)

4. 3 Countermeasure

This section describes our countermeasure for smart grey

hole attack model.

4. 3. 1 Overview of countermeasure

In our countermeasure, we aim at building a robust clas-

sifier to detect smart grey hole malicious nodes. This neural

network classifier in the normal server is built to classify

the neighboring nodes of each normal nodes. To obtain this

classifier, in the training phase, the classifier is trained si-

multaneously when the malicious server is updated. That is,

in the large number of episodes in the training phase, the

classifier is also trained in each episode. Finally, a trained

classifier is obtained after the training phase.

In the test phase, we install this trained normal server on

each normal node, and normal nodes utilize majority votes

to decide the category of a neighboring node. For instance,

if one node a has 3 neighboring normal nodes, and two of

the normal nodes classify this node as malicious node, then

this node a will be decided as malicious node.

4. 3. 2 Frequent adaption in the training phase

In the training phase, because the malicious nodes employ

reinforcement learning to adjust their behavior pattern, the

normal nodes, simultaneously, need to update their server

frequently. We thus make the normal nodes connect to the

normal server to update the classifier and detect malicious

nodes frequently. Before each adaption, the normal server

collects data (features and categories of neighboring nodes)

from all the normal nodes, then the normal server uses this

data to update itself.

As the features of the normal server, we extract inherent

features by the method in [10]. We also add another feature,

the ActNeiRatio, which is calculated by 1/ActNei, to enable

the normal nodes to figure out the number of surrounding

active neighboring nodes. Note that we utilize SMOTE [5]

to over-sample the minority class so that the proportion of

training instances from each class is equal.

4. 3. 3 Pre-training of normal classifier

In our method, we train a neural network classifier and uti-

lize it to detect malicious nodes. However, if we randomly

initialize the neural network classifier, it will have low accu-

racy and may converge slowly. Therefore, before the start of

training phase, for the purpose of fast adaption and accel-

erating training speed, we pre-train the classifier with data

obtained in different network environments. In particular,

we run simulations with normal nodes and malicious nodes

with ordinary grey hole attack models to obtain data. Then

we utilize the data to construct a pre-trained classifier. Fi-

nally, we run the training phase on this pre-trained classifier

instead of a randomly initialized classifier.

5. Experiments

5. 1 Setting

We used Qualnet 7.4 network simulator（注2）. Each node

transmitted messages and data packets, whose payload sizes

were 256 bytes, using an IEEE 802.11b device. The commu-

nication range of each node was adjusted to roughly 100 me-

ters, and the network bandwidth was 11Mbps. As with exist-

ing works [9], [12], we used the random way point model [4],

with a maximum movement speed of vmax and pause time

of 0. (The velocity of each node was randomly chosen from

(0,vmax].) When there were n nodes in a network, there were

n · m (m ∈ [0.1, 0.4]) malicious nodes in the network. The

normal nodes contact with the normal server to detect neigh-

boring malicious nodes and update the classifier in every 0.4

seconds. The threshold time for giving positive was set as

10 seconds. We randomly chose a pair of source node and

destination node every f seconds. If the source node has an

active route to the destination node, the source node sends

a data packet to the destination node directly. Otherwise

the source node broadcasts an RReq to find a route to the

destination node. The network parameters are described in

Table 3.

Evaluation method. We run simulation of 1500 episodes

in the training phase. We trained both malicious and nor-

（注2）：http://web.scalable-networks.com/qualnet-network-simulator-software



Table 3 Parameter configuration

Parameter Values

n 20

m of training 0.1, 0.2, 0.4

m of testing 0.3

vmax [m/sec] 4.0

Network size [m2] 300 × 300

f [sec] 0.2

mal servers simultaneously with random initial node posi-

tions and random node IDs. We also selected m from 0.1,

0.2, and 0.4 for each episode in the training phase, while in

test phase, m was 0.3.

To investigate the effectiveness of the proposed counter-

measure (P-detection for short), we used MLP [16] as a

competitor. This is a state-of-the-art technique utilizing

MultiLayer Perceptron for classification. The method em-

ploys the following features: TReqRec, TReqSen, TRepRec,

TRepSen, TRerRec, TRerSen, TDatRec, TDatSen（注3）, num-

ber of neighboring nodes (NeiNum), ratio of routing table

update with respect to entries (PCR), and ratio of routing

table update with respect to hop counts (PCH). Note that

we also update MLP in the same way as the proposed coun-

termeasure.

Furthermore, to investigate the effectiveness of our pro-

posed grey hole attack model (P-attack for short), we com-

pared P-attack with ordinary grey hole attack model (O-

attack for short) with a malicious percentage of 50%.

Criteria. We focus on the following criteria to measure the

performance of MLP and P-detection.

• Accuracy: This is represented by
|Tnor→nor,mal→mal|

|T | ,

where Tnor→nor,mal→mal and T are respectively the set of

correctly classified instances and the set of all instances.

• Detection rate: This is represented by |Tmal→mal|
|Tmal|

,

where Tmal→mal and Tmal are respectively the set of cor-

rectly classified instances describing malicious nodes and

the set of all instances describing malicious nodes.

• Mis-Detection rate: This is represented by |Tnor→mal|
|Tnor| ,

where Tnor→mal and Tnor are respectively the set of wrongly

classified instances describing normal nodes and the set of

all instances describing normal nodes.

• Detection time: This shows how long time normal

nodes spend to detect all the malicious nodes in a mobile

WSN.

5. 2 Result

Detection time. Table 4 shows the detection time of P-

detection and MLP for P-attack and O-attack. For both the

attack models, P-detection detects all the malicious nodes

（注3）：MLP does not convert these listed features to ratios, which

differ from our method.

Table 4 Detection time

P-detection MLP

P-attack [sec] 10.4 28.8

O-attack [sec] 2.4 9.6

Table 5 Results on O-attack

P-detection MLP

Accuracy 0.95 0.85

Detection rate 0.94 0.86

Mis-detection rate 0.02 0.14

Table 6 Results on P-attack

P-detection MLP

Accuracy 0.76 0.58

Detection rate 0.88 0.60

Mis-detection rate 0.23 0.41

Table 7 Decrease of transmission rate

Avg first 50 episodes Avg last 50 episodes

Transmission rate 71.7 64.7

much faster than MLP. This is because MLP employs differ-

ent features from the P-detection. In particular, MLP only

utilizes numbers of packets, which is hard for the neural net-

works to process when the numbers grow larger. However,

our countermeasure utilizes the ratios, and the neural net-

works can process them more smoothly with gradient de-

scent. As a result, it is obvious that our features can de-

scribe the malicious behaviors better. Moreover, compared

with O-attack, normal nodes spend much more time to de-

tect P-attack. This is because malicious nodes of P-attack

can learn from the detecting method and change their be-

haviors, and they are hardly detected. We can see from this

result that P-attack can exist longer than an O-attack with

a detecting method employed by the mobile WSN.

Accuracy, detection rate, and mis-detection rate. Ta-

bles 5 and 6 show the experimental results of accuracy, de-

tection rate, and mis-detection rate of P-detection and MLP

on both P-attack and O-attack. In Table 5, we can see

that our P-detection has good performance for detecting

O-attack, and outperforms MLP. This is because O-attack

cannot adaptively change its performance ratio, while P-

detection learns its behavioral pattern rapidly. MLP also has

good result because although MLP utilizes packet numbers,

it can still learn from the training data when the numbers

are small. In Table 6, P-detection outperforms MLP on all

the three criteria with regard to detecting P-attack. How-

ever, compared with results in Table 5, performance of P-

detection and MLP decrease. This is because P-attack tries

to update itself by changing behaviors. These results show

that P-attack can actually learn to avoid being detected, and

our proposed detection method is effective and can be em-



ployed for detecting this form of attack in mobile WSN.

Decrease of detection rate. To show the performance of

P-attack, we present the decrease of transmission rate of mo-

bile WSN in the training phase (Table 7). This table shows

the result of the average transmission rate of the first and

the last 50 episodes. From this result, we can see that the

transmission rate drops after the training phase. This result

shows that P-attack can learn to disturb the transmission of

data packet in mobile WSNs.

6. Conclusion

This paper presented a smart grey hole attack model and

its countermeasure in mobile WSN. We constructed a rein-

forcement learning based attack model and detect it by our

adaptive server. The experiment results revealed that the

attack can learn from the state-of-art countermeasures and

extend the lifetime of malicious nodes. Our countermeasure,

as well, outperformed the state-of-art and detected the ma-

licious nodes rapidly. As a part of future work, we plan to

investigate on super all-round attack with not only the grey

hole attack function, but can harm a whole mobile WSN in

different ways, and we likewise plan to design a countermea-

sure of it.
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