
   

DEIM Forum 2019 B4-2 

 

Two-Encoder Pointer-Generator Network for Summarizing Segments of Long 

Articles 

Junhao LI† and Mizuho IWAIHARA‡ 

Graduate School of Information, Production and Systems 

Waseda University, Kitakyushu, Japan 

E-mail:  †lijunhao@toki.waseda.jp,  ‡iwaihara@waseda.jp 

Abstract  Usually long documents contain many sections and segments. In Wikipedia, one article can usually be divided 

into sections and one section can be divide into segments. But although one article is already divided into smaller segments, 

one segment is often still too long to read. So, we consider that segments should have a short summary for readers to grasp a 

quick view of the segment. This paper discusses applying neural summarization models including seq2seq model and pointer 

generator network model to segment summarization. These models for summarization can take target articles as the only input 

to the model. However, in our case, it is very likely that other segments in the same article contain descriptions related to the 

target segment. Therefore, we propose several ways to add additional information from the whole article to the short target 

segment, as the input for summarization. We compare the results against the original models without additional information. 

Furthermore, we propose a new model that uses two encoders to process target segments and additional sequences separately.  

Our results show the two-encoder model outperforms the original models in terms of ROGUE and METEOR scores. 

Keyword  text summarization, deep learning, seq2seq, pointer generator network, multi-encoder 

 

1. INTRODUCTION 

Wikipedia, started from 2001, has been emerging as the 

world’s largest encyclopedia. The English version of 

Wikipedia contains 5.7 million articles and over 600 

articles are newly created in one day as of August 2018. 

Since the encyclopedia is managed by Wikipedia 

Foundation, an international non -profit organization, and 

a great number of collaborators in the world under some 

international projects, its articles are continuously edited 

and developed. Therefore, its content is quite reliable 

regardless of its openness [5]. 

With the number of Wikipedia articles growing very 

quickly, the information that Wikipedia contains is 

invaluable. But generally, the usage of Wikipedia is 

limited to mainly for human readers. The most important 

work that computer systems can support in using 

Wikipedia resource is searching and showing interested 

articles to readers [13]. With the continuously growing 

number of articles in Wikipedia, the search results might 

be very long. In additional, segments in articles sometimes 

become longer, which is making it difficult for human 

readers to grasp the whole idea from one specific segment. 

Summarizing the whole article may be one solution for 

this problem. But the summary of article contains 

information from the whole article, which would make it 

not suitable for the reader who only looks for information 

in several segments or sections. Also, the summary of one 

article may lose too much information from target 

segments or sections. So we think it is necessary to focus 

on segment summarization. 

There are two broad approaches to summarization: 

Extractive and abstractive. 

Extractive methods involve the selection of the phrases 

and sentences from the source document to make up new 

summary. Techniques involve ranking the relevance of 

sentences or phrases in order to choose only those most 

relevant to the meaning of the source. One widely used 

example is TextRank [17] that uses graph-based ranking 

algorithm to extract important sentences from a single 

document.  

Abstractive methods  attempt to develop an 

understanding of the main concepts in a document and 

then express those concepts in clear natural language. It 

uses linguistic methods to examine and interpret the text 

and then to find the new concepts and expressions to best 

describe it by generating a new shorter text that conveys 

the most important information from the original text 

document [19]. Recently deep learning methods have 

shown promising results for text summarization. The most 

popular model is sequence to sequence attention model 

[9]. 

In this paper, we mainly focus on summarization 

methods that involves deep learning models which 

contains both approaches. Since we need to add additional 



 

 

information from the whole article and sometimes the 

whole article is too long containing too much noisy 

information. So we are using extractive methods to 

shorten the article into several sentences as additional 

information to the model.  The rest of this paper is 

organized as follows. Section 2 covers related work. 

Section 3 is models we used. Section 4 shows three 

additional sequence methods. Section 5 is the results  of 

our experiments and section 6 make discussions about it.    

Section 6 concludes this paper.  

 

2. RELATED WORK 

Long short-term memory (LSTM) was first proposed by 

Seep Hochreiter and Jürgen Schmidhuber [18] and 

improved in 2002 by Felix Gers’ team [6]. LSTM networks 

are well-suited to classifying, processing and making 

predictions based on time series data. LSTMs were 

developed to deal with the exploding and vanishing 

gradient problems that can be encountered when training 

traditional RNNs. Later Graves et al. [7] proposed a neural 

network model using bidirectional LSTM (Bi -LSTM) for 

phoneme classification, showing great improvement over 

original LSTM.  

Neural network-based Seq2Seq learning has achieved 

remarkable success in various NLP tasks, including but 

not limited to machine translation and text summarization. 

The Seq2Seq model is firstly proposed by Ilya et al. [2]. 

The Seq2Seq model is an encoder-decoder model such that 

the encoder converts the input sequence into one context 

vector that contains all information in the input sequence. 

Then the decoder generates the output sequence based on 

the context vector.  

Bahdanau et al. [4] were the first to introduce attention 

mechanism to the seq2seq model to release the burden of 

compressing of entire source into a fixed-length vector as 

context. Instead, they proposed to use a dynamically 

changing context vector ℎ𝑡
∗ in decoding process. 𝑒𝑖

𝑡 is the 

attention energy of hidden states of encoder at timestep i 

in decoder step t. 𝑎𝑡 is the attention weights distribution. 

vT, Wh, Ws and batten are learnable parameters.  

𝑒𝑖
𝑡 = 𝑣𝑇 tanh(𝑊ℎℎ𝑖 + 𝑊𝑠𝑠𝑡 + 𝑏𝑎𝑡𝑡𝑛)    (1) 

𝑎𝑡 = softmax(𝑒𝑡)   (2) 

ℎ𝑡
∗ = ∑ 𝑎𝑖

𝑡ℎ𝑖𝑖    (3) 

Rush, Chopra, et al. [1] were the first to apply Seq2Seq 

and attention model on text summarization, achieving 

state-of-the-art performance on DUC-2004 and Gigaword, 

two sentence-level summarization datasets.  

Based on Rush [1], Luong et al. [14] proposed 

multi-task Seq2Seq model to solve different NLP problems 

using the same model in the same time. Their model 

settings include one encoder to many decoders, many 

encoders to one decoder and many encoders to many 

decoders. Their results show that it is a promising model 

for solving multi-task problems. Several results that use 

multiple encoders are even better than only one encoder.  

Vinyals et al. [15] proposed a Seq2Seq model called 

pointer network which produces an output sequence 

consisting of elements from the input sequence applying 

soft attention distribution of Bahdanau et al. [4]. The 

pointer network has been utilized to create hybrid 

approaches for NMT, language modeling and 

summarization.  

Abigail et al. [2] proposed a pointer-generator network 

model that combines pointer network with original 

Seq2Seq + attention model. Their model allows both 

copying words through pointing and generating words 

from a fixed vocabulary. In their model, they are using 

Bahdanau attention mechanism [4] in equations (1) (2) and 

(3) to calculate attention distribution 𝑎𝑡  and context 

vector  ℎ𝑡
∗ . Their generation probability 𝑝𝑔𝑒𝑛 ∈ [0,1]  for 

timestep t is calculated from context vector, decoder state 

s𝑡  and the decoder input  𝑥𝑡. 

𝑝𝑔𝑒𝑛 =  σ(𝑤ℎ∗
𝑇 ℎ𝑡

∗ + 𝑤𝑠
𝑇𝑠𝑡 + 𝑤𝑥

𝑇𝑥𝑡 + 𝑏𝑝𝑡𝑟)  (4) 

Where  𝑤ℎ∗
𝑇 ,  𝑤𝑠

𝑇 , 𝑤𝑥
𝑇  and 𝑏𝑝𝑡𝑟  are learnable parameters 

and σ is the sigmoid function. Then the 𝑝𝑔𝑒𝑛 is used as a 

soft switch to choose between generating a word from the 

vocabulary by sampling from 𝑝𝑣𝑜𝑐𝑎𝑏 or copying a word 

from the input sequence by sampling from the attention 

distribution 𝑎𝑡 . 

𝑃𝑣𝑜𝑐𝑎𝑏 = softmax(𝑉′(𝑉[𝑠𝑡, ℎ𝑡
∗] + 𝑏) + 𝑏′)   (5) 

𝑃(𝑤) = 𝑝𝑔𝑒𝑛𝑃𝑣𝑜𝑐𝑎𝑏(𝑤) + (1 − 𝑝𝑔𝑒𝑛) ∑ 𝑎𝑖
𝑡

𝑖:𝑤𝑖=𝑤   (6) 

Note that if w is an out-of-vocabulary (OOV) word, then 

𝑝𝑣𝑜𝑐𝑎𝑏(𝑤) is zero; similarly, if w does not appear in the 

source document, then ∑ 𝑎𝑖
𝑡

𝑖:𝑤𝑖=𝑤  is zero. Their model has 

the ability to produce OOV words which is one of the 

primary advantages compared to the original Seq2Seq 

model.  

 

3. NEURAL SUMMARIZATION MODELS 

In this section, we describe the baseline 

sequence-to-sequence model, pointer-generator network 

and our two-encoder pointer-generator network models.  

 

A. Sequence-to-sequence attentional model  

We utilize the sequence-to-sequence attentional model 

whose input is only target segment text as our baseline 



 

 

model. This Seq2Seq model is similar to that of Abigail et 

al. [2]. Figure 1 shows the structure of this model. The 

words of target segment w are fed into the encoder (one 

single-layer Bi-LSTM) one by one in encoding timestep i, 

producing a sequence of encoder hidden states h. Then the 

decoder (one single-layer LSTM) receives the word 

embedding of the word from the previous step (when 

training, the previous word is from the reference segment 

summary) on each step t and has decoder state  𝑠𝑡.  

 

Fig. 1.  sequence-to-sequence attentional model  

Then the attention distribution 𝑎𝑇  is calculated by 

Bahdanau attention [4] in (1) and (2). The attention 

distribution can be considered as a probability distribution 

over the source words, which helps the decoder d ecide 

where to focus to produce next word.  

Next the attention distribution is used to produce a 

weighted sum of the encoder hidden states, context vector 

ℎ𝑡
∗  in (3). The context vector can be viewed as a 

fixed-length representation of what has been read from the 

target segment for this step.  

Then the context vector is concatenated with the 

decoder state  𝑠𝑡  and fed through two linear layers to 

produce the vocabulary distribution 𝑝𝑣𝑜𝑐𝑎𝑏 in (5). 𝑝𝑣𝑜𝑐𝑎𝑏 

is a probability distribution over all words in the 

vocabulary. In this model the final distribution  P (w) to 

predict words w is: 

𝑃(𝑤) = 𝑃𝑣𝑜𝑐𝑎𝑏(w)  (6) 

The loss for training of decode step t is the negative log 

likehood of the target word 𝑤𝑡
∗ : 

𝑙𝑜𝑠𝑠𝑡 = − log 𝑃(𝑤𝑡
∗)  (7) 

The overall loss for the whole sequence is:  

𝑙𝑜𝑠𝑠 =
1

𝑇
∑ 𝑙𝑜𝑠𝑠𝑡

𝑇
𝑡=0   (8) 

The experiment of this model has two input settings. 

One is the baseline that uses only target segment and the 

other concatenates the target segment and compressed 

whole article as one input  sequence to the model.  

 

B. Pointer-generator network 

 

Fig. 2.  Pointer-generator network 

We utilized pointer-generator network with coverage 

mechanism proposed by Abigail et al. [2], which allows 

both copying words by pointing from the source text and 

generating words from a fixed vocabulary. Figure 3 shows 

the structure of this model.  

For the purpose of solving the common repetition 

problem for sequence-to-sequence models, they proposed 

coverage mechanism. They defined the sum of attention 

distributions over all previous decoder timesteps as 

coverage vector  𝑐𝑡: 

𝑐𝑡 = ∑ 𝑎𝑡′𝑡−1
𝑡′=0    (9) 

The coverage vector 𝑐𝑡  could be considered as a 

distribution over the source document words that 

represents the degree of coverage that those words have 

received from the attention mechanism so far. Note that 𝑐0 

is a zero vector because on the first decoding timestep, 

none has been covered from the source document. Then 

the coverage vector is used as extra input to the attention 

mechanism. Changing the formula to calculate the 

attention energy from (1) to:  

𝑒𝑖
𝑡 = 𝑣𝑇 𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑖 + 𝑊𝑠𝑠𝑡 + 𝑊𝑐𝑐𝑖

𝑡 + 𝑏𝑎𝑡𝑡𝑛)     (10) 

Where 𝑊𝑐  is a learnable parameter vector of same 

length as v. Adding the coverage vector to the attention 

mechanism making the attention mechanism’s current 

decision is considering its previous decisions which 

summarized in the coverage vector  𝑐𝑡. 

 Then the attention distribution 𝑎𝑡 and context vector 

ℎ𝑡
∗  are calculated as in (2) and (3). The generation 

probability 𝑝𝑔𝑒𝑛 ∈ [0,1] for timestep t is calculated as in 

(4). Then the final probability distribution is calculated in 



 

 

(6). 

They also defined a coverage loss to penalize repeatedly 

attending to the same locations:  

𝑐𝑜𝑣𝑙𝑜𝑠𝑠𝑡 = ∑ min (𝑎𝑖
𝑡, 𝑐𝑖

𝑡)𝑖     (11) 

The coverage loss is bounded as:  𝑐𝑜𝑣𝑙𝑜𝑠𝑠𝑡  ≤ ∑ 𝑎𝑖
𝑡

𝑖 = 1. 

Then they reweighted the coverage loss by hyperparameter 

λ and added it to the primary loos function. The final loss 

function is:  

𝑙𝑜𝑠𝑠𝑡 = − log 𝑃(𝑤𝑡
∗) + 𝜆 𝑐𝑜𝑣𝑙𝑜𝑠𝑠𝑡  (12) 

For experiments, we use two input settings. On e is using 

target segment text only and the other is using the 

concatenated sequence with target segment and additional 

sequence.  

Considering just concatenating the target segment and 

additional information sequence might make it hard for 

decoder to recognize which part is from the segment. In 

addition, the encoder is using Bi -LSTM which means the 

additional sequence would affect the target segment ’s 

result. Considering the noise information in additional 

sequence might have bad influence, we also consider 

another model that uses different encoders to process the 

target segment and additional sequence separately.  

 

C. Two-encoder Pointer-generator network  

 

Fig. 3.  Two-encoder Pointer-generator network 

This model is similar to the previous model. There are 

two encoders in the model, one is to process the target 

segment and the other is to process the additional 

sequence. Figure 3 shows the structure of this model.  

There are two hidden state sequences produced by two 

different encoders. The target segment encoder produces 

hidden states  ℎ1 , and the additional sequence encoder 

produces hidden states ℎ2 . Having two hidden state 

sequences makes it not suitable for original Bahdanau 

attention mechanism. So we are changing the attention to 

fit our problem. We calculate the attention energy for two 

hidden state sequences separately:  

 

𝑒1𝑖
𝑡 = 𝑣1𝑇 tanh(𝑊1ℎℎ𝑖

1 + 𝑊1𝑠𝑠𝑡 + 𝑊1𝑐𝑐𝑖
𝑡 + 𝑏1𝑎𝑡𝑡𝑛)  (13) 

𝑒2𝑖
𝑡 = 𝑣2𝑇 tanh(𝑊2ℎℎ𝑖

1 + 𝑊2𝑠𝑠𝑡 + 𝑊2𝑐𝑐𝑖
𝑡 + 𝑏2𝑎𝑡𝑡𝑛)  (14) 

where 𝑒1𝑖
𝑡 is the target segment’s attention energy and 

𝑒2𝑖
𝑡  is the additional sequence‘s attention energy. 𝑣1𝑇 , 

𝑊1ℎ , 𝑊1𝑠 , 𝑏1𝑎𝑡𝑡𝑛 , 𝑣2𝑇 , 𝑊2ℎ , 𝑊2𝑠  and 𝑏2𝑎𝑡𝑡𝑛  are 

learnable parameters. Then we concatenate the two 

attention energy sequences into one by a learnable 

parameter γ (1.0 as initial value) to calculate the whole 

attention weight distribution 𝑎𝑡 : 

𝑎𝑡 = softmax([𝑒1𝑡, 𝛾𝑒2𝑡])   (15) 

 Then we change the formula to calculate the context 

vector using attention weight distributions from (3) to:  

ℎ𝑡
∗ =  ∑ 𝑎𝑖

𝑡ℎ𝑖
1𝑘

𝑖=0 + ∑ 𝑎𝑖
𝑡ℎ𝑖

2𝑚+𝑘
𝑖=𝑘+1     (16) 

where k is the length of the target segment encoder’s 

hidden states sequence and m is the length of the 

additional sequence encoder’s hidden state sequence.  

Then the remaining step is similar to the previous 

pointer-Generator network model. We use the same 

calculation to obtain the final distribution, the loss is still 

using the formula (12).  

 

4. TECHNIQUES FOR ADDITIONAL 

SEQUENCE  

In this paper, we consider that the contents outside the 

target segment in the article contains useful information 

for segment summarization. But normally the whole 

article would be too long.  Such long sequences would 

make it hard to train the RNN-based model. In addition, 

we cannot ignore that there would also be a large volume 

of noise information outside the target segment. So in this 

section, we discussed three single -document extractive 

method to extract the important sentences from the article 

to form the additional input sequence.  

 

A. Basic method– leading sentences  

The basic method works by picking leading two 

sentences in each segment of the article and concatenate 

these sentences into one sequence as the additional 

sequence for our model.  

According to Abigail et al. [2], their experiment using 

only leading three sentences performs better than using 

longer inputs. We consider that the important information 

is usually in the leading sentences. Thus, we utilize this 

method as our basic method to extract important sentences 

from the target article.  



 

 

 

 

B. TextRank + word2vec  

TextRank is a graph-based ranking algorithm inspired 

by PageRank [16] algorithm. It was first proposed by 

Mihalcea and Tarau [12]. TextRank is mainly used for 

keyphrase extraction and important sentence extraction. In 

our work, we are using it for sentence extraction.  

To apply TextRank and word2vec on sentence extraction, 

they first build a graph associated with the text, where the  

graph vertices are representative for the sentences in the 

document to be ranked. The main steps are:  

(1) Split the target document into sentences 𝑉 =

[𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑚] , and construct graph  G = (V, E). Then split 

sentences into words and remove stop words to obtain  𝑆𝑖 =

[𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,𝑛], where 𝑡𝑖,𝑗 ∈ 𝑆𝑖 is the candidate keyword.  

(2) Using word2vec to convert words in a sentence 

to vectors and calculate the average vector of the 

sentence:  

𝑣𝑒𝑐(𝑆𝑖) =
1

𝑛
∑ 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐(𝑡𝑖,𝑗)𝑛

𝑗=1   (17) 

(3) Calculate the cosine similarity between 

sentences as the edge weights in graph G:  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝑖 , 𝑆𝑗) = 𝑐𝑜𝑠(𝑣𝑒𝑐(𝑆𝑖), 𝑣𝑒𝑐(𝑆𝑗))  (18) 

(4) Calculate the score of each sentence, where the 

score of 𝑆𝑖 is: 

𝑊𝑆(𝑆𝑖) = (1 − 𝑑) + 𝑑 ∑
𝑤𝑗𝑖

∑ 𝑤𝑗𝑘𝑆𝑘∈𝑂𝑢𝑡(𝑆𝑗)
𝑆𝑗∈𝐼𝑛(𝑆𝑖) 𝑊𝑆(𝑆𝑗) (19) 

(5) Pick the top-10 highly scored sentences and sort 

by the positions of sentences in the document. 

Concatenate the sentences as our additional sequence.  

 

C. TextTeaser  

TextTeaser is a feature-based extractive summarization 

algorithm. It selects sentences that possess best score 

among others. Its’ features include title feature, sentence 

length, sentence position and keyword frequency.  

 

5. EXPERIMENTS 

 

A. Datasets  

We collected 26,318 pages from English version of 

Wikipedia as our dataset for the experiments. There are 

81,124 segments and 50,056 sections altogether in the 

dataset. We convert all the words to lower case and the 

numbers to “TAG_OF_NUM”. 

Since there is no human labeled segment summary in 

Wikipedia articles, and writing this number of segment 

summaries is not realistic. So, we utilized Word2Vec to 

calculate the average vector of segment title and segment 

sentences. Then use cosine similarity to compare  segment 

title and segment sentences and choose the most similar 

sentence. We concatenate it after the segment title as our 

golden standard.  

 

B. Settings  

For all experiments, we follow the settings in Abigail et 

al. [2]. Our models have 256-dimensional hidden states 

and 128-dimensional word embeddings. For the 

pointer-generator network models, we use a vocabulary of 

50k words for both source and target.  

The word embeddings we are using are not pre -trained. 

They are learned from scratch during training. We tra in 

using Adagrad [10] with learning rate 0.15 and an initial 

accumulator value of 0.1. We use gradient clipping with a 

maximum gradient norm of 2 without using any form of 

regularization.  

For training and testing, we truncated the target 

segment and additional sequence into leading 400 words 

and limit the length of the summary to 50 words. 

According to Abigail et al. [2], truncating the input 

sequence could raise the performance of the model.  

We trained our models on a single 1080Ti GPU with a 

batch size of 32. For testing, we utilized beam search 

algorithm to produce segment summaries with beam size 

8. 

To compare the performance between models, we 

trained our models separately using the additional 

sequence which is generated by the additional technique s 

including leading sentences, TextRank and TextTeaser. We 

also did the experiment with different length of target 

segments to see how the length affect the result . 

C. Results  

Our results are shown in Table I. We evaluate our 

models with the standard ROUGE metric [3], reporting the 

F1 scores for ROUGE-1, ROUGE-2 and ROUGE-L, which 

respectively measure the word -overlap, bigram-overlap, 

and longest common sequence between the reference 

summary and the summary to be evaluated.  According to 

Abigail et al. [2], ROUGE trends to reward safe s trategies 

such as selecting the first-appearing content, or preserving 

original phrasing, which may lead to extractive systems 

obtains higher ROUGE scores on average . Therefore, we 

also evaluate our systems with the METEOR metric, which 

rewards not only exact word matches, but also matching 

stems, synonyms and paraphrases.  



 

 

TABLE I.  RESULTS OF DIFFERENT MODELS  

 

For the baseline models, the Seq2Seq attentional model 

and Pointer-Generator network, applying additional 

sequence method means concatenating the additional 

sequence after the target segment. For no -additional 

sequence method, only truncated target segment was input 

to the model.  

In the results of the no-additional sequence method, we 

can see that pointer-generator network outperforms the 

traditional Seq2Seq attentional model. The model trains 

faster and takes less iterations. Thus, in succeeding 

experiments on additional sequence methods we only 

focus on Pointer-Generator network.  

We first perform experiments that simply concatenate 

the additional sequence after the target segment. The 

results show that our idea of additional sequences from the 

entire article is improving the performance. Among them, 

sequences that extracted by TextRank perform the best. 

Therefore, for our models that process two sequences 

separately, we use additional sequences extracted by 

TextRank only.  

The last row of Table 1 is the result of our proposing 

model Two-Encoder Pointer-Generator network. As we 

can see from the scores, our model out -performed all the 

other models including original Pointer-Generator 

network with additional sequences by TextRank. Thus, our 

model that uses two encoders to process the target segment 

and the additional sequence separately appears to be 

working. 

We also evaluate TextRank as an extractive method to 

extract summary from the target segment. The first row 

shows TextRank is slightly better than our model. We 

consider the possible reason can be that the major part of 

golden standard in our dataset is one sentence from the 

target segment.  

Additionally, we performed experiments on how the 

length of a target segment affects the result. We divided 

the testing dataset into three parts by the length of the 

target segments: less than 200 words; between 200 and 

400 words; over 400 words. Then we use our trained 

Two-Encoder Pointer-Generator network model from the 

last experiment to produce the results. Table II shows the 

results.  

TABLE II.  EXPERIMENT ON LENGTH OF TARGET SEGMENTS  

Length  
ROUGE METEOR  

1 2 L Exact  +stem/syn/para  

Overall  44.69  31.04  38.17  27.17  27.69  

(0,200]  53.86  40.65  47.30  33.83  34.26  

(200,400]  45.39  33.19  40.70  28.73  28.93  

(400,∞ )  29.86  15.65  23.68  16.53  17.20  

The results show that our model performs much better 

when the target segment is less than 200 words and 

slightly better between 200 and 400 words. But it becomes 

worse when the length exceeds 400 words. It implies that 

our model is more capable to handle shorter articles, 

which is one of the existing common problems for RNNs 

that longer articles are harder to process , including LSTM. 

Also, shorter segments mean a smaller number of 

sentences, given a higher possibility to locate the 

reference sentence in the segment.  

Considering that there has no perfect evaluation method 

for text summarization, we picked several results from the 

four different methods we evaluated and observed by 

human eyes. Table III is two of those examples. We can 

see that the Seq2Seq model are clearly the worst model. It 

failed to generate a large number of Out -Of-Vocabulary 

(OOV) words, which the Pointer-Generator Network is 

capable of.    

Models  

Additional 

Sequence 

Method  

ROUGE  METEOR 

1 2 L Exact +stem/syn/para  

TextRank  None 44.99  33.20  38.84  26.72  27.46  

Seq2Seq 

attentional model  
None 36.70  19.33  29.90  17.08  17.65  

Pointer-Generator 

Network 

None 42.17  28.01  35.82  23.26  23.91  

Basic (leading)  42.70  29.02  36.00  25.20  25.73  

TextRank  43.96  30.23  37.31  26.33  26.86  

TextTeaser  43.13  29.43  36.38  25.46  25.98  

Two-Encoder 

Pointer-Generator 

Network 

TextRank  44.69  31.04  38.17  27.17  27.69  



 

 

TABLE I.  SUMMARY EXAMPLES  

 

Reference summary:  

TAG_OF_NUM state representative election in 

TAG_OF_NUM.  newhall was elected as a democrat to serve 

in the massachusetts house of representatives of 

TAG_OF_NUM.  

 

TAG_OF_NUM. on march TAG_OF_NUM, 

TAG_OF_NUM, johnston released his first comic book 

published by boom!.  

Seq2Seq Attention model:  

state representative in the TAG_OF_NUM election [UNK] 

received TAG_OF_NUM [UNK] TAG_OF_NUM votes 

coming in second behind republican candidate john [UNK] 

gonzalez who received TAG_OF_NUM [UNK] 

TAG_OF_NUM [UNK] and just ahead of fellow democrat 

michael [UNK] jay who received TAG_OF_NUM [UNK] 

TAG_OF_NUM [UNK]  

 

and jonathan [UNK] on march TAG_OF_NUM [UNK] 

TAG_OF_NUM [UNK] johnston released his first comic 

[UNK] at [UNK] published by [UNK] [UNK] [UNK] 

comic book [UNK] with the album and an warren's 

[UNK] has collaborated with skateboarding and clothing 

company supreme on numerous collections [UNK] of 

clothing and various [UNK].  

Pointer-Generator Network Without Additional 

Sequence:  

TAG_OF_NUM election in the TAG_OF_NUM election 

newhall received TAG_OF_NUM , TAG_OF_NUM votes 

coming in second behind republican candidate john w. 

blaney who received TAG_OF_NUM , TAG_OF_NUM 

votes, and just ahead of fellow democrat michael f. phelan 

who received TAG_OF_NUM , TAG_OF_NUM [UNK]  

 

on march TAG_OF_NUM , TAG_OF_NUM , johnston 

released his comic book, published by boom! [UNK] the 

comic book ties-in with the album and an ios app. 

johnston has collaborated with skateboarding and 

clothing company supreme on numerous collections  

Pointer-Generator Network With TextRank additional 

Sequence:  

congress in TAG_OF_NUM newhall was elected as a 

democrat to serve in the massachusetts house of 

representatives of TAG_OF_NUM.  

 

 

and on march TAG_OF_NUM , TAG_OF_NUM , johnston 

released his first comic book, at sxsw, published by 

boom! studios.  

Two-Encoder Pointer-Generator Network (proposed):  

TAG_OF_NUM election in TAG_OF_NUM newhall  was 

elected as a democrat to serve in the massachusetts house of 

representatives of TAG_OF_NUM.  

 

TAG_OF_NUM on march TAG_OF_NUM , 

TAG_OF_NUM , johnston released his first comic book, 

at sxsw, published by boom! studios.  

TextRank:  

newhall was elected as a democrat to serve in the 

massachusetts house of representatives of TAG_OF_NUM.  

 

on march TAG_OF_NUM, TAG_OF_NUM, johnston 

released his first comic book published by boom!  

• Green  denotes segment title in the reference summary  

 

Furthermore, Both the Seq2Seq attentional model and 

Pointer-Generator Network are generating a large number 

of extra words we need. Also, our methods with additional 

sequence are not generating so much words. This maybe 

because that the additional sequence we are using is 

extracted from the entire article including the target 

segment. By adding the additional sequence as an extra 

input to the model, the most important information of the 

target segment is emphasized twice  

 

6. DISSCUSSION 

A. How the additional sequence works  

It is clear from Table I that applying additional 

sequence tends to achieve higher scores than none, no 

matter simple concatenation or using two encoders to 

process it separately. We offer two possible explanations 

for these observations.  

Firstly, for Wikipedia articles that have multiple 

segments, segments are usually not isolated from each 

other. They tend to contain similar information. It is 

possible that these information could be extracted into the 

additional sequence that would be useful for segment 

summarization.  

Secondly, the additional sequence can be regarded as 

compressed information from the entire article. It is likely 

that it contains the target segment’s most important 

information. By supplying the target segment and the 

additional sequence, the important information in the 

target segment could be emphasized.  

Furthermore, we consider that additional sequence 

could be useful for generating longer summaries like news 

article. Existing similar news article’s summary could be 

used as e additional sequences to the model, since the 

summary of similar articles usually have similar writing 



 

 

patterns. By introducing similar news articles’ highly 

compressed summary, words that widely used in summary 

but not appearing in the article could be introduced, which 

could help the system more easily to generate.  

B. Why processing separately performs better  

Rows 5 and 7 in Table I show that using the same 

additional sequence and target segment, processing them 

separately scores higher than concatenation. We have 

several explanations for that.  

As we can see in Table II, the results are getting worse 

when the target segment is getting longer. We consider  this 

as the common problem for RNNs that they have problems 

handling longer articles. Therefore, in our problem, 

concatenating the target segment and additional sequence 

is making the input sequence longer. Which would make it 

harder for our LSTM-structured encoder to handle. Thus, 

in our two-encoder model, using two LSTMs to process 

the target segment and additional sequence can avoid this 

problem in some degree.  

Using several LSTMs to process parts of the input text 

has been researched by researchers. Tan et al. [11] are 

using a hierarchical encoder-decoder framework for text 

summarization. Tan utilized word encoders and sentence 

encoders in their model and it shows effectiveness. Thus, 

we can assume that in future study, we could use a similar 

structured hierarchical encoder-decoder model to process 

long articles, by dividing the encoders into word encoders, 

sentence encoders and maybe paragraph encoders.  

7. CONCLUSIONS 

In this paper, we performed experiments on three 

different models for Wikipedia article segment 

summarization work including Seq2Seq + attention, 

Pointer-Generator network and our Two-Encoder 

Pointer-Generator network. We also considered three 

different ways to extract important information from the 

whole article. The results show that our idea of additional 

sequence and processing it separately is effective. Our 

models out-performed the other models. Although there 

still exist problems, one is that our model suffers from 

longer segments. But our Two -Encoder model’s results 

suggest that the LSTM has the potential for dealing with 

longer articles, if an appropriate hierarchical structure is 

employed. 

References 
[1] Alexander M Rush, Sumit Chopra, and Jason Weston. 

2015. “A neural attention model for abstractive 
sentence summarization”. In Empirical Methods in 
Natural Language Processing.  

[2] A See, PJ Liu, CD Manning. 2017. “Get To the Point: 
Summarization with Pointer-Generator Networks”. 

Annual Meeting of the Association for 
Computational Linguistics  

[3] Chin-Yew Lin. 2004a. Looking for a few good 
metrics: Automatic summarization evaluation -how 
many samples are enough? In NACSIS/NII Test 
Collection for Information Retrieval (NTCIR) 
Workshop  

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua 
Bengio. 2014. “Neural machine translation by jointly 
learning to align and translate”. In Computer 
Science.  

[5] Dat P.T Nguyen, Yutaka Matsuo, and Mitsuru 
Ishizuka. “Exploiting Syntactic and Semantic 
Information for Relation Extraction from Wikipedia” 
Text-Mining and Link-Analysis (TextLink2007), 
2007.  

[6] Gers, Felix A., Nicol N. Schraudolph, and Jürgen 
Schmidhuber. "Learning precise timing with LSTM 
recurrent networks." Journal of machine learning 
research 3, no. Aug (2002): 115 -143.  

[7] Graves and Schmidhuber, J.  “Framewise phoneme 
classification with bidirectional LSTM networks”. In 
IEEE International Joint Conference on Neural 
Networks. 2005, 4:2047-2052 

[8] Hu M, Sun A and Lim E-p 2007 Comments-oriented 
Blog Summarization by Sentence Extraction Proc. of 
the Sixteenth ACM Conf. on Conf. on Information 
and Knowledge Management 901 -4 (Lisbon, ACM)  

[9] Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence 
to Sequence Learning with Neural Networks. In NIPS, 
2014. 2, 3, 7  

[10] John Duchi, Elad Hazan, and Yoram Singer. 2011. 
Adaptive subgradient methods for online learning 
and stochastic optimization. Journal of Machine 
Learning Research 12:2121–2159.  

[11] Jiwei Tan, Xiaojun Wan and Jianguo Xiao. 2017. 
Proceedings of the 55th Annual Meeting of the 
Association for Computational Linguistics,  pages 
1171-1181  

[12] Mihalcea R, Tarau P. TextRank: Bringing order into 
text. In Proceedings of the 2004 conference on 
empirical methods in natural language processing 
2004  

[13] M. Volkel, M. Krotzsch, D. Vrandecic, H. Haller, and 
R. Studer. Semantic Wikipedia. In Proceedings of the 
WWW2006, pages 585-594, 2006.  

[14] Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol 
Vinyals, and Lukasz Kaiser. 2016. “Multi-task 
sequence to sequence learning”. In ICLR.  

[15] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 
2015. “Pointer networks”. In Neural Information 
Processing Systems.  

[16] Page, Lawrence, et al. The PageRank citation 
ranking: Bringing order to the web. Stanford Info 
Lab, 1999.  

[17] Rada Mihalcea and Paul Tarau. “TextRank: Bringing 
Order into Texts” 2004  

[18] S Hochreiter, J Schmidhuber. 1997. “Long short-term 
memory”. In Neural Computation, 1997, 
9(8):1735-1780  

[19] Vishal Gupta, Gurpreet Singh Lehal. “A Survey of 
Text Summarization Extractive Techniques”. Journal 
of emerging technologies in web intelligence (Vol. 2, 
No. 3, August 2010).  


