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あらまし オンラインショッピングは多くの消費者に浸透しており，推薦システムを用いて消費者に商品を提示する

Webサイトも増加している．推薦システムは単一ドメインにおける情報を基にしているため，推薦に必要な情報が不

足しがちという問題がある．この問題を解決するアプローチとして，他のドメインの情報を利用することが考えられ

る．これを実現するためには，異なるドメイン間で同一のユーザを特定する必要がある．本稿では，テキスト情報を

用いてユーザアカウントをベクトル化し，正準相関分析を用いてベクトルのマッチングを計算する手法を提案する．

実験により，提案手法はランダムマッチングや線形回帰よりも高精度であることを示す．
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1 Introduction

Online shopping has nowadays become more and more

popular. Because of abundant items, customers may suffer

from selecting items. To avoid such situations, online shop-

ping systems employ item recommendation. Normally, rec-

ommender systems utilize content-based recommendations

[1]. Based on item information of user histories, user pref-

erence profiles are generated. Firstly, some features of items

are used to represent the items. Secondly, some history infor-

mation of users is used to generate user preference profiles.

Finally, by comparing user preference profiles and features of

items, the system recommends items which are most related

to users [2].

Content-based recommendations are a part of collabora-

tive filtering. Many tasks use collaborative filtering because

that people often get the best recommendations from some-

one with similar tastes and interests to themselves. Based

on this phenomenon, collaborative filtering is a technique

that match people with similar interests and making recom-

mendations [3]. To be more specific, collaborative filtering is

the method of filtering for information or patterns utilizing

techniques involving collaboration among multiple agents,

viewpoints, data sources, etc [4]. When tasks use collabora-

tive filtering, it usually has a large data set. Collaborative

filtering methods have been used in many situations. For ex-

ample of used data, it includes sensing and monitoring data

in mineral exploration, environmental sensing over large ar-

eas and multiple sensors, financial data, such as financial

service institutions that integrate many financial sources; or

in electronic commerce and web applications where the focus

is on user data [5].

The above recommender systems are usually based on in-

formation from their own domains. That is to say, data for

analyzing is limited. For instance, we assume that a cus-

tomer purchased a diaper in a shopping site. Accordingly,

the customer would have an interest in baby products, thus

the recommender system of the shopping site would put baby

products into his/her recommendation list. However, except

for baby products, no items can be added into the list. The

reason is that the recommender system has no idea about

his/her preference in other situation, resulting in a lack of in-

formation. Using information from other domains may solve

this problem.

A user usually has multiple accounts among different do-

mains. Besides an account of the shopping site, we assume

that the user has several accounts of other domains. It is

useful for recommender systems if it can obtain information

from other domains. On the other hand, for a certain user,

the shopping site usually does not have a knowledge about

the user’s account ID of other domains. As a result, although

there is abundant information on a certain user in other do-

mains, it is impossible for recommender systems to utilize

them. Therefore, matching account IDs of the same user in

different domains would be a key solution for this problem.

In this paper, we consider the following situation. A

user has accounts of two domains. One of the domains



is an e-commerce site. In this domain, there are descrip-

tions (mainly text) of products and purchase histories of

users. The other domain is an Ad-Network service. The

Ad-Network service puts advertisement on some webpages,

thus can record URLs that users have accessed. Our task is

to match accounts of the same user in these two domains, by

only using the above information.

The proposed method comprises the following steps.

Firstly, we make vectors for accounts based on text informa-

tion of users. Secondly, since vectors from different domains

are difficult to compare, we map these vectors into a shared

space. Eventually, after vectors are mapped into the shared

space, we match accounts according to the similarity.

In our preliminary experiments, we tested on canonical

correlation analysis compared with linear regression. The re-

sults show that canonical correlation analysis achieved bet-

ter precision than linear regression and random selection.

Our further experiments show that cosine similarity is more

proper than Euclidean distance.

The rest of this paper is organized as follows. In Section

2, we introduce some related work. In Section 3, we describe

our problem and situation. In Sections 4 and 5, our method

is described. In Section 6, we introduce our experiments and

results.

2 Related Work

Since cross-domain matching use information from other

domains, it can be regarded as a problem of domain adapta-

tion [6]. Domain adaptation is a problem utilizing machine

learning and transfer learning. This problem occurs when

we aim at learning from a source data distribution and a

model with good performance on a different but related tar-

get data distribution. For instance, a representative task is

in picture recognition. In this task, the source distribution

can be a model of human-being recognition, and it need to

be adapted into a target distribution of animal recognition.

There are several types of domain adaptation. They differ

in the information given in the target distribution. Unsuper-

vised domain adaptation is that the learning sample contains

a set of labeled source examples, while a set of unlabeled

source examples and an unlabeled set of target examples are

given in learning and prediction [7]. In supervised domain

adaptation, we have all the samples labeled [8]. Since la-

beled examples are difficult to obtain, it is not realistic in

most situations. To solve this problem, semi-supervised do-

main adaptation is utilized. In this situation, a small set of

labeled examples in target domain are used [9].

3 Problem Statement

In this paper, we consider the following problem. There

are two domains. One of the domains is an e-commerce site.

We call it Domain A in this paper. The other domain is an

Ad-Network service. We call it Domain B in this paper.

For Domain A, many items which belong to several cat-

egories are selling in a shopping site. For every item, sev-

eral kinds of information is given, such as price, text de-

scriptions, category, selling duration, etc. Meanwhile, infor-

mation about users is also given. It includes user’s profile,

such as gender, mail address, username, etc. Besides, pur-

chase histories of users are also available, such as purchase

item, time, amount, price, etc. For Domain B, when open-

ing a URL including an advertisement provided by this Ad-

Network service, the advertisement will be displayed on its

web page. When users access this advertisement, some infor-

mation on users is recorded, such as user’s IP address, access

time, accessed URL, etc.

We assume that a user has accounts of the two domains.

This user has only one account in Domain A. Conversely,

this user can have more than one account in Domain B. This

is because that accounts in Domain B automatically update

with a certain period of time, if the user constantly receives

advertisements. That is to say, the user automatically gets a

new account by the certain period of time. The problem in

this paper is to match accounts belonging to the same user,

while only using information listed above. Additionally, we

only utilize purchase histories in Domain A and access log of

URLs in Domain B, to solve this problem. The structure of

our account domains is shown in Figure 1.

図 1 Account structure

4 Vector Generating

For account matching, comparing the similarity of vectors

of users between different domains may be the most realis-

tic method. Considering purchase histories and access log of

URLs, the most meaningful information is articles involved.



For example, the articles in purchase histories can be de-

scriptions of items, while the articles in URLs can be news.

After we have obtained articles, we use them to generate user

features.

4. 1 Obtaining of articles

Access logs of URLs and purchase histories involve some

articles.We mainly use crawling to obtain these articles with

special tags or in specific parts.

In Domain A, we have information on purchase histories

of users. We assume that items purchased by a user can rep-

resent the features of the user. Therefore, we use description

articles of each item that the user has purchased, to obtain

user’s features. As for items in Domain A, item title, pro-

motion slogan and detailed description are combined to be

their articles.

In Domain B, we have access log of users, in which accessed

URLs are recorded. For most URLs, web pages include arti-

cles, which could represent preferences of users, thus can be

utilized to get features of them. In HTML source file, since

articles are usually involved in tag a and tag p [10], we do

crawling based on tag a, tag p, as well as page title. In web

pages, tag a and tag p are usually the body part, thus include

the main articles. The article of a web page is combined by

these three parts.

4. 2 Converting articles to vectors

After we have obtained articles from these two domains, we

convert the articles into vectors. We utilize MeCab [11] for

text segmentation, and make vectors by Doc2Vec [12]. The

two procedures are shown below.

MeCab is an open-source text segmentation library for use

with text written in the Japanese language. It can analyze

and segment a sentence into its parts of speech. Doc2Vec

requires a list of words to make vectors, for which a long

article is not available. Therefore, it is necessary to divide

the article into several words by MeCab.

The goal of Doc2Vec is to create a numeric representation

of a document, regardless of its length. It learns fixed-length

feature representations from variable-length pieces of texts,

such as sentences, paragraphs, and documents. Based on

Word2Vec, it represents each document by a dense vector

which is trained to predict words in the document [13].

4. 3 Vectors of user account

After we have converted article into vectors, we make a

vector for a user’s account based on article vectors. In Do-

main A, many users have purchased more than one item. In

Domain B, all the users have accessed more than one URL.

That is to say, both in Domain A and Domain B, every ac-

count can have more than one article vector. Therefore, it

図 2 Matching System: a user has account in both Domain A

and Domain B. After obtaining vectors of account, we map

them into a shared space for matching

is necessary to get one account vector from several article

vectors.

We assume that account r has a set of s articles: Ar =

{ar1, ar2, ar3, ..., ars}, where ari is the i-th article of ac-

count r. Additionally, by converting articles into vectors,

set of articles Ar has a set of vectors converted: Tr =

{tr1, tr2, tr3, ..., trs}, where tri is the vector of the i-th article

of account r. Therefore, the vector of account r is calculated

as:

tr =
1

s

s∑
k=1

trk (1)

That is to say, for a certain account, we use the average of

all article vectors as account vector.

5 Account Matching

Since we have obtained account vectors of two different

domains, we then match accounts of the same user based

on these account vectors. A common solution is to match

by similarity of vectors. However, since these vectors are

generated from different domains, they would have different

feature distributions. Therefore, it is impossible to use the

similarity of these vectors directly, and it is necessary to map

these vectors in a shared space. In this section, we firstly map

account vectors into a shared space, and then calculate the

similarity of the mapped vectors. Our matching system is

shown in Figure 2.

A common solution is to calculate a conversion matrix

among the two domains using linear regression. By using lin-

ear regression, it is possible to use straight lines to fit sample

points [14]. We assume that an n-dimensional vector X and

an m-dimensional vector Y, where X = [x1, x2, x3, ..., xn]
⊤

and Y = [y1, y2, y3, ..., ym]⊤. Both X and Y have several fea-

tures, thus we want to analyze the relationship between X

and Y. If X ∈ Rn and Y ∈ Rm, we can establish an equation

X = WY as:
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where W is a conversion matrix for linear regression:

W =


w11 w12 ... w1n

w21 w22 ... w2n

... ... ... ...

wm1 wm2 ... wmn

 . (3)

Since yi = w⊤
i x, it is necessary to train m times to get wi

of amount m, where yi is the i-th feature of y and wi is the

i-th row in W . However, there is a problem that each feature

of Y is correlated to every feature of X, but has no correla-

tion to other features of Y itself. To solve this problem, we

utilize Canonical Correlation Analysis (CCA), permitting to

calculate multiple objective variables simultaneously.

5. 1 Canonical Correlation Analysis

Canonical correlation analysis can be used as a method to

find out the correlation of two pairs of vectors. If we have two

vectors X = (x1, x2, x3, ..., xn) and Y = (y1, y2, y3, ..., ym),

canonical correlation analysis will use linear calculations to

find out the combinations of X and Y which have maximum

correlation with each other, and give a solution for the max-

imum correlation [15].

We assume that X and Y are account vectors in differ-

ent domains of the same user, canonical correlation analysis

seeks vectors a and b for the following situation [16]:

max ρ = corr(a⊤X, b⊤Y) (4)

By maximize the correlation between a⊤X and b⊤Y, we

can convert paired vectors X and Y into similar vectors X′

and Y′, as a result of mapped into a shared space, where

X′ = a⊤X and Y′ = b⊤Y [17]. Therefore, we can calculate

the similarity of vectors in the two different domains.

In canonical correlation analysis, the converted vectors X′

and Y′ usually have the same number of dimensions. The

number of dimensions can be selected according to our needs.

The more the number of dimensions is, the more features the

vectors would have. However, more number of dimensions

may require longer time while training models [18].

5. 2 Similarity Calculation

After we have got converted vectors, we can match vectors

by similarity. Normally, when calculating the similarity of

vectors, Euclidean distance and cosine similarity are usually

used. In mathematics, Euclidean distance is the ordinary

straight-line distance between two points in Euclidean space.

The Euclidean distance between X and Y is calculated as:

distance = d(X,Y) =

√√√√ n∑
i=1

(xi − yi)2 (5)

Cosine similarity is a measure of similarity between two

non-zero vectors of an inner product space that measures

the cosine of the angle between them. For vectors X and Y,

the cosine similarity is calculated as:

similarity = cos(θ) =
X ·Y

||X||||Y|| (6)

6 Experiment and Result

Our experiment is based on real-world database of two dif-

ferent domains. A user has accounts in both Domain A and

Domain B. In Domain A, every user has only one account.

In Domain B, one user has at least one account.

6. 1 Data set

As for our dataset, we utilize data collected from May 11th,

2017 to March 31th, 2018. In the dataset, we have 82 thou-

sand users. Therefore, in Domain A, there are 82 thousand

accounts, for which there is at least one purchase record.

Meanwhile, in Domain B, since one user could have more

than one account, there are 92 thousand accounts, for which

there are several URL access records.

For the URLs accessed in Domain B, we have calculated

the access time of each URL. Since accessed URLs have an

amount of more than 11 million, it is almost impossible to

do crawling to get all articles. Therefore, we just crawled

articles of URLs with more than 1,000 accesses.

After we have obtained all needed articles from the two do-

mains, we make vectors by MeCab and Doc2Vec for articles.

Vectors are made to be 256-dimension.

6. 2 Evaluation methodology

For the evaluation metric of our experiment, we use

Precision@R. It stands for the matching performance by

using the precision with which the true target instance is

included in a set of R proportion of candidates instances,

S(R), found by each method. More formally, the precision

is given by:

Precision@R =
1

Nte

Nte∑
i=1

δ(ti ∈ Si(R)) (7)

where Nte is the number of test instances in the target do-

main, ti is the i-th true target instance, Si(R) is R candidate

instances of the i-th source instance and δ(·) is the binary

function that returns 1 if the argument is true, and 0 other-

wise.

In our experiments, we use 70% of data to train our model



and the rest 30% for test. For each different condition, we do

experiment for five times with different allocation of train-

ing and testing data. After all the experiments of the same

condition are completed, we average the result of each ex-

periment as the final result.

6. 3 Similarity calculation

Since we have two options (cosine similarity and Euclidean

distance) to calculate similarity, we want to know which is

suitable for our experiment. We have tested in many con-

ditions, and find out cosine similarity is more suitable. An

instance is given in Figure 3, where the dimension of mapped

vectors is 9.
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図 3 Similarity calculation: for each top R proportion of can-

didates, CCA’s precision of Euclidean distance and cosine

similarity

6. 4 Dimension of mapped vectors

When training the model using canonical correlation anal-

ysis, we need to set the parameter of the dimension of

mapped vectors. A larger dimension means more user fea-

tures, but it also has some negative effects, such as more

calculation consumption and feature noise. Since we have

known that cosine similarity has better performance, we find

the best dimension using cosine similarity.

We tested on the parameter of dimension of mapped vec-

tors from 1 to 15. All results of canonical correlation analysis

are shown in Tables 1 and 2, using Euclidean distance and

cosine similarity. Bold values are the best performance under

a certain dimension of mapped vectors. When dimension of

mapped vectors is near 9, the performance has a peak value.

6. 5 Comparison with linear regression

Linear regression is a baseline method in our problem. For

comparison, we tested on it. Our method used 9 dimensions

for account at vectors. Both the two experiments used co-

sine similarity. The result is shown in Figure 4. It is obvious

that our method outperforms the baseline method. It can be

regarded as high performance, but still can be improved.
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図 4 Comparison with linear regression: for each top R propor-

tion of candidates, CCA’s precision compared with linear

regression

7 Conclusion

In this paper, we developed a system to match accounts

in different domains of the same user. In order to use vector

similarity to match accounts, we generate vectors based on

articles which are related to users by MeCab and Doc2Vec.

When matching accounts, we find that canonical correlation

analysis and cosine similarity have better performance. The

results are better than random and linear regression. It indi-

cates that our method is realistic in our experiment situation.

As for future work, we plan to utilize some non-linear

methods, such as deep canonical correlation analysis [19] and

kernel canonical correlation analysis [20].
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