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あらまし 本稿はマイクロタスク型クラウドソーシングにおいて機械学習の分類予測に基づいた参考回答提示がタス

ク結果の品質改善とクラウドワーカの学習効果にどう影響するか検討する。400名のクラウドワーカを対象に実験を

行なった。実験では画像分類タスクを対象に以下の 4つの参考回答タイプを比較した：正解ラベル、ランダム、正解

ラベルによって訓練した分類器の予測、人間の回答によって訓練した分類予測。実験の結果、参考回答の正解率が高

い順に応じて品質が改善された。しかし、学習効果に関しては、分類器を用いた参考回答はどちらも予測精度が 100

％でないのにも関わらず、これらの参考回答タイプのみにおいて観察された。言い換えると「正解」や「ランダム」

では学習効果が観察されなかった。この結果から次の仮説が示唆された。機械学習は何らかの予測モデルを作るので、

人間が機械学習の出力を解釈できる可能性がある。特に問題の完全な解釈が困難な場合は、ランダムな回答だけでな

く正しい回答も解釈するのが困難なため、正解を全て提示されるよりも学習しやすい。

キーワード クラウドソーシング,機械学習,不随意学習

Notice

This paper is originally published in IEEE HMData2018 [1].

1 Introduction

Quality assurance is one of the primary issues in crowdsourcing;

numerous studies have addressed the problem of ensuring the qual-

ity [2]. To ensure the quality, training the workers is the one of typ-

ical strategy. For example for the microtasks such as categorization

or labeling task, three approaches are commonly used: (1) Show-

ing the experts examples [3], [4], (2) Providing feedback about the

worker’s performance [5], and (3) Asking the workers interact with

each other for performing collaboratively on the same task [6].

As the comparatively simple first approach, Shah and Zhou [7]

proposed self-correction which is a two-stage setting where the

worker first answers the questions and is then allowed to change

his / her answers after looking at other workers’ answer as a refer-

ence. The effectiveness of self-correction has shown theoretically

and also empirically [8]: Self-correction improves the quality after

the worker answer and induces involuntary learning when the refer-

ence was correct answer or answer made by workers who get higher

accuracy.

However, when considering the actual operation, the problem is

that we need to gather all answers before providing the reference

answers. In particular, when an unknown or an urgent problem oc-

curs (e.g. natural disaster response, local area problems)— in other

words, no experts are around there, no correct answers are gathered,
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図 1 Proposed method overview: The requester performs the tasks and

trains the machine learner based on the answers. After that, the

crowds are asked to perform the two-stage setting tasks called self-

correction. They answer the task first and are then allowed to change

their answers after looking reference answer made by machine pre-

diction. Through performing self-correction tasks repeatedly, crowds

are expected to get a learning effect.

and no investments are made, it is difficult to provide answers as

a reference with a high accuracy rate in self-correction to ensure

quality.

To solve this problem, we propose using machine learning pre-

diction as a reference answer (Fig. 1). The requester performs the

tasks with the learning data and trains the machine learner based

on the answers. Then, the crowds are asked to perform the self-

correction tasks and allowed to change their answers after looking



reference answer made by machine prediction. Some of the readers

might come up with a question; why don’t we use machine predic-

tion as the answer for all the remaining data? The reason is that the

accuracy rate is not necessarily high if a machine learner is trained

with the answers by the requester instead of the correct answers.

We expect the self-correction with the machine prediction derives

better quality as same as self-correction with other worker’s answer,

but it has not been clarified so far. Therefore, the question arises

whether there is effectiveness regarding learning effect and quality

assurance in self-correction.

In this paper, we investigate how the task results improve con-

cerning quality during and after presenting machine prediction as a

reference answer in self-correction. Four reference types were ex-

amined in the experiment; Correct, Random, Machine prediction

trained with correct answers (ML-Correct), and that trained with

human answers (ML-Human). Our key findings are as follows:

（ 1） Significant learning effects were observed in “ML-

Human” and tendency to that in “ML-Correct”, although those ac-

curacy rates were far from correct (100%). Moreover, there were no

significant learning effects in “Correct” and “Random”. This sug-

gests the following hypothesis: Since machine learners make some

“models” for the problem, it is easier for humans to interpret the

outputs of machine learners than the results without via them; it is

more difficult to interpret not only random answers but also the cor-

rect answers in case where the perfect interpretation of the problem

(and thus the correct answers) is difficult.

（ 2） In presenting the machine prediction trained with the hu-

man answers, some workers whose accuracy rate is under the ma-

chines in the pre-test performed with higher accuracy rate than ma-

chines in the post-test. This suggests using the machine prediction

can be useful for bootstrapping solutions in the situation where un-

known problems occur without expertise or at a low cost.

2 Related Work

Improving the quality of results is an important issue in the

crowdsourcing, and numerous studies have addressed these issues

[2], [9]. Aggregating the results [10], selecting people [11], and in-

centivizing people [12] have been common approaches to improve

the outputs. Note that our approach can be combined with any of

them.

Feedbacking from others or experts is also another common ap-

proach to improve the worker outputs. Revolt [13] and Microtalk

[14] give workers opportunities to change their answers after seeing

justifications of other workers’ answers. Shepherd [5] allows both

self- and external-assessments of various forms. Self-correction

proposed by Shah and Zhou [7] offers a simple extension, which

is presenting other workers answer in the task. In this study, due to

the simplicity, we adopted self-correction, but our approach doesn’t

restrict to it.

A B C D A B C D
A B C D

Reference
answer

B

What is this?

Stage 1 Stage 2

What is this? What is this?

Pre-test Self-correction Post-test
× 16 Tasks × 16 Tasks× 64 Tasks

(Including 4 gold-
standard question)

図 2 Experimental procedure

Furthermore, many studies have addressed training people in

crowdsourcing (e.g. Showing the experts examples [4] and men-

toring [15]). Those methods showed the effectiveness of quality im-

provement; however, they require us to prepare additional training

tasks for the workers and to know the answers in advance to teach

them to the workers. On the other hand, self-correction does not re-

quire any additional task type, and Kobayashi et al. [8] showed that

repeating self-correction tasks induce learning effect.

Our approach extends Kobayashi’s method; namely, we utilized

machine prediction as a reference answer. Since all reference an-

swers were made by machine prediction, we do not have to gather

all answers before presenting the references.

As machine learner techniques are recently developed, human-

ML interaction for teaching crowds, called machine teaching has

emerged [3], [16]?[19]. Our contribution is that the experimental

results showed machine prediction induced crowds to learn while

the correct answers did not work. Applying this finding to machine

teaching technology can produce more effective improvement, and

further investigation will be part of our future work.

3 Experimental Method

We conducted an experiment to investigate whether presenting

machine prediction affects the result in terms of learning effects and

quality assurance. This experiment was approved by the local ethi-

cal committee.

3. 1 Participants

Four hundred workers participated in the experiment via Yahoo!

Crowdsourcing1 and actual tasks were assigned from Crowd4U2 as

the external task. The workers were divided into four groups as each

condition mentioned later. The workers were to receive a reward of

about $1.00 when they completed all the tasks.

3. 2 Procedures

The experiment procedure consists of 3 phases; pre-test, self-

correction, and post-test (Fig. 2). Pre-test and post-test were de-

signed for assessment of worker ability. In both tests, workers were

1：https://crowdsourcing.yahoo.co.jp

2：https://crowd4u.org
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図 3 Self-correction tasks: (Left) In stage 1, a worker answers a question, (Right) then, in stage 2, the

worker is allowed to corrects his / her answer by reviewing other workers’ answers. In both pre-

and post-test workers perform four-class classification tasks that equal to stage 1.

asked to perform 16 tasks. By comparing the accuracy rate between

the pre-test and post-test, we can clarify the involuntary learning

effects of self-correction.

In the self-correction, the workers were asked to perform 64 self-

correction tasks. As we describe in section 1, self-correction is a

two-stage setting task which allows the workers to correct their an-

swers by reviewing other workers’ answers. By comparing the ac-

curacy rate between stage 1 and 2, we can verify the quality im-

provement effects of self-correction.

During the 64 self-correction tasks, we set four gold-standard

questions to filter out the spam workers. In the gold-standard ques-

tion, one of the four exemplary paintings was presented to be clas-

sified. We analyzed only those workers who correctly answered the

gold-standard questions.

3. 3 Tasks

In the pre-test, post-test and stage 1 in the self-correction, we

used a four-class classification task (Left side in Fig. 3). The classi-

fication task involved answering a question by selecting a particular

image. We displayed an image of a painting on the left side of a

screen. On the right side, we presented four exemplars of painting

with painter names underneath. From these choices, workers were

asked to identify the paintings on the left.

In stage 2 in the self-correction, we presented the question image

and worker’s choice from the first stage again. Workers can change

their choice. We highlighted other workers’ answers as reference

answers in the experiment involving self-correction with reference

answers (Right side in Fig. 3).

3. 4 Conditions

We examined four reference types for self-correction in the ex-

periment; Correct, Random, Machine prediction trained with cor-

rect answers (ML-Correct), and that trained with human answers

(ML-Human).

Correct: The Correct answers were shown as a reference.

Random: The answers selected randomly were shown as a refer-

表 1 Confusion Matrix of human labeling for learning data

Predicted

Sisley Corot Pissarro Monet

Sisley 55.6 14.0 13.3 8.0

Actual Corot 4.3 64.9 20.0 1.8

Pissarro 28.2 16.7 44.8 17.0

Monet 11.1 3.5 21.0 72.3

表 2 Accuracy rate before and after filtered out in pre-test

Condition Filter N Median Mean Std

Correct No 93 0.438 0.399 0.135

Yes 85 0.438 0.396 0.138

Random No 82 0.438 0.411 0.147

Yes 69 0.438 0.421 0.148

ML-Correct No 89 0.375 0.395 0.155

Yes 82 0.375 0.399 0.152

ML-Human No 94 0.438 0.408 0.168

Yes 83 0.438 0.414 0.168

ence. The expected accuracy equals to chance level which was 25%.

ML-Correct: The predictions of machine learning trained with cor-

rect answers were shown as a reference.

ML-Human: The predictions of machine learning trained with hu-

man answers were shown as a reference.

3. 5 Datasets

The tasks were to classify the presented paintings by four famous

impressionism painters; Alfred Sisley, Camille Corot, Camille Pis-

sarro, and Claude Monet. The painting images were gathered from

WikiArt.org3.

We divided the images into two groups; we used 1200 images as

training data for machine learner and used 96 images for experiment

tasks.

3. 6 Machine Models

We constructed machine learner models with the training datasets

3：https://www.wikiart.org/



表 3 Confusion matrix of prediction by ML-Correct

Predicted

Sisley Corot Pissarro Monet

Sisley 73.9 0 26.1 0

Actual Corot 4.3 87.0 8.7 0

Pissarro 0 13.0 82.6 4.3

Monet 17.4 4.3 17.4 60.9

表 4 Confusion matrix of prediction by ML-Human

Predicted

Sisley Corot Pissarro Monet

Sisley 65.2 17.4 17.4 0

Actual Corot 4.3 78.3 17.4 0

Pissarro 34.8 30.4 21.7 13.0

Monet 30.4 0 4.3 65.2

mentioned above. We used Google AutoML Vision4 for model con-

struction. Google AutoML Vision is a neural network based ma-

chine learning model builder for image recognition, offered as a ser-

vice from Google Cloud. In this experiment, we made two models;

ML-Correct and ML-Human.

ML-Correct: We constructed the machine learner model with pairs

of 1200 images and its correct answer as training data.

ML-Human: We asked a person as requester role to label the 444

images to make the training data. We constructed the machine

learner model with pairs of 444 images and human answer as train-

ing data. Table 1 shows the confusion matrix of human answers for

training data. The average accuracy was 59.4%.

4 Results

Pre-test results: We analyzed the number of participants who com-

pleted the tasks in each condition and their accuracy before and after

filtered out in pre-test (Table 2). Totally 358 out of 400 partici-

pants completed the tasks, and 319 participants correctly answered

the gold-question tasks. The multiple comparison tests showed that

there are no significant differences among conditions.

Accuracy of machine predictions: Table 3 and Table 4 show con-

fusion matrix of ML-Correct and ML-Human respectively. Average

accuracy rate of ML-Correct was 76.1% and that of ML-Human was

57.6%.

Learning effects: We analyzed the learning effect of self-

correction, namely quality improvements between pre-test and post-

test. Fig. 4 shows the accuracy rate between pre-test and post-test

in each condition. We conducted a two-way ANOVA with the test

phase (pre- and post-test) and the condition (four conditions) as fac-

tors. As a result, there was a tendency for the test phase (F(1,315) =

3.565, p = .060), but there was no significant difference in condition

(F(3,315) = 1.385, p = .247) and their interaction (F(3,315) = 1.386, p

= .247).

4：https://cloud.google.com/vision/automl/docs/
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図 4 Learning effects: Accuracy rate between Pre-test and Post-test. Sta-

tistical test showed post-test was higher than pre-test in “ML-Human”

and “ML-Correct”. In contrast, there were no significant difference in

“Correct” and “Random”.
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図 5 Quality improvements: Accuracy rate between stage 1 and 2. Sta-

tistical showed stage 2 was higher than stage 1 in “Correct”, “ML-

Correct”, and “ML-Human”.

Though there was no interaction, we conducted multiple-

comparison for each group, since we were interested in the differ-

ence between two test phases. A multiple-comparison using t test

with Bonferroni correction revealed a significant difference between

the pre-test and post-test in “ML-Human” (F(1,315) = 4.88, p = .028),

and tendency in “ML-Correct” (F(1,315) = 3.08, p = .080). In con-

trast, there were no significant difference in “Correct” (F(1,315) = .07,

p = .789) and “Random” (F(1,315) = .12, p = .734).

Quality improvements: We analyzed quality improvements dur-

ing self-correction tasks. Fig. 5 shows the accuracy between stage 1

and 2 in self-correction in each condition. We conducted a two-way

ANOVA with the stage and the condition as factors. As a result,

there were significant effects from the stage (F1,315) = 183.287, p

<.001), from the condition (F(3,315) = 11.957, p <.001), and their in-

teraction (F(3,315) = 37.476, p <.001). Post-hoc t test with Bonferroni

correction showed a simple main effect from the stage in the “Cor-

rect” (F(1,315) = 185.13, p <.001), “ML-Correct” (F(1,315) = 99.67, p

<.001), and “ML-Human” (F(1,315) = 32.28, p <.001), but no main
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図 6 Proportion of improvements: Difference of accuracy rate between

pre- and post-test. Positive indicates post-test is higher than pre-test,

and vice versa. More participants in ML-Human improved their ac-

curacy at post-test than those in the others condition did.

effect in the “Random” condition (F(1,315) = 1.76, p = .186).

5 Discussion

Learning effects: Fig. 4 showed that learning effect by present-

ing machine prediction was observed. Fig. 6 shows the proportion

of difference of accuracy rate between pre- and post-test. Positive

indicates post-test is higher than pre-test, and vice versa. As a com-

parison among the conditions, more participants in ML-Human im-

proved their accuracy at post-test than those in the other conditions

did.

As Table 3 and Table 4 showed, the accuracy rates of reference

answers in “ML-Correct” and “ML-Human” (76.1% and 57.6% in

average) was far from “Correct” (100%). Nevertheless, interest-

ingly, the learning effect was observed in conditions with both ma-

chine prediction. In addition, as Fig. 7 showed quality improvement

between pre-test and post-test in each class, accuracy rate increased

particularly for the “Corrot” class in both “ML-Correct” and “ML-

Human”, while those didn’t much increase in “Correct” in the case

where even perfect accuracy references were presented.

These results suggest the following hypothesis: Since machine

learners make some “models” for the problem, it is easier for hu-

mans to interpret the outputs of machine learners than the results

without via them; it is more difficult to interpret not only random

answers but also the correct answers in the case where the perfect

interpretation of the problem is difficult.

This hypothesis can be explained in terms of Zone of Proximal

Development (ZPD) by Vygotzky [20]. ZPD is an area of learn-

ing that occurs when a person is assisted by a teacher or peer with

a higher skill set. ZPD is also defined as an area between what

a learner can do without help, and what they cannot do even with

help. In this experiment, presenting machine predictions might be

suitable for ZPD, in other words, the machine prediction can be

useful for scaffolding participants learning [21]. However, present-

ing the correct answers was out of ZPD, because those reference

answers were too complicated to interpret for the participants; the

tasks performed in this experiment were difficult. Since the results

would be different in easier tasks, further investigations with other

datasets can be future work.

The results also showed that approximately 10% workers whose

accuracy rate is under the machines at first achieved higher accuracy

rate than machines after learning. This implies that this strategy can

be expected to be useful for bootstrapping solutions in the situation

where unknown or urgent problems occur without expertise or at a

low cost.

Quality improvements in each class: Fig. 5 showed that qual-

ity improvements by self-correction were observed in “Correct”,

“ML-Correct”, and “ML-Human”. Comparing Fig. 4 with Fig.

5, it is interesting that the order of effectiveness were not same

between learning effect and self-correction effect; “ML-Human”,

“ML-Correct”, “Correct” and “Random” in learning effect whereas

“Correct”, “ML-Correct”, “ML-Human”, and “Random” in self-

correction effect.

Looking into each class, as Fig. 8 shows, accuracy rate seems

to be higher according to the accuracy rate of reference answers.

Presenting the higher accuracy reference answers gives the larger

difference between stage 1 and 2; the accuracy rates of reference

answers with all classes in “Correct”, “ML-Correct”, and all classes

except “Pissarro” in “ML-Human” were over 60% and thus im-

provements appeared in those groups. Analyzing the answer pat-

tern, this was because some participants often follow the reference

answers. Since the prediction accuracy was 21.7% with “Pissarro”

in “ML-Human”, the quality decreased from stage 1 to 2 in that

group. Nevertheless, the accuracy rate in “Random” remained al-

most the same instead of decreasing due to the low reference accu-

racy because participants did not follow the reference answers.

6 Conclusion

In this paper, we investigated whether presenting machine predic-

tion affects the result in terms of learning effects and quality assur-

ance. Learning effects appeared only in presenting machine predic-

tion, although the accuracy rate of machine prediction was far from

correct. This suggests the hypothesis that it is easier for humans to

interpret the outputs of machine learners than the results without via

them, such as the correct answers for complicated problems.

The results also showed that some workers achieved a higher ac-

curacy rate than machines after learning. This implies that this strat-

egy can be expected to be useful for bootstrapping solutions in a sit-

uation where unknown or urgent problems occur without expertise

or at a low cost. Combination of selecting high-quality workers [22]

and iterative active learning methods [18], [23], [24] may help the

bootstrapping.

For future work, to explore what kind of worker behavior is re-

lated to the learning effect, which can be an interesting problem to

human factor [25]. We also shall investigate with other datasets and



図 7 Learning effect in each class: Quality improvement between pre-test and post-test. Y-axis in-

dicates accuracy rate. Accuracy rate increased particularly for the “Corrot” class in both “ML-

Correct” and “ML-Human”, while those did not much increase in “Correct” in case where even

perfect accuracy reference were presented.

図 8 Self-correction effect in each class: Quality improvement between stage 1 and stage 2. Y-axis in-

dicates accuracy rate. Presenting higher accuracy reference answers gives larger difference. Since

the prediction accuracy was 21.7% with “Pissarro” in “ML-Human”, the accuracy rate decreased

in that group.

will consider the interpretability of machine prediction [26]?[30] to

utilize the learning effects.
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