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Abstract The IoT devices have been the subject of much interest. Nevertheless, these devices are resource con-

strained and susceptible to false-data-injection attacks and failures, leading to unreliable and inaccurate sensor

readings. In this paper, we propose a hierarchical framework for detecting misbehaving nodes in WSNs. It uses

fuzzy logic in event-condition-action (ECA) rule-based WSNs to detect malicious nodes, while also considering

failed nodes. The spatiotemporal semantics of heterogeneous sensor readings are considered in the decision process

to distinguish malicious data from other anomalies. Our experiments using real-world dataset demonstrate that our

approach can provide high detection accuracy with low false-alarm rates.
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1. Introduction

The Internet of Things (IoT) can be described as a dy-

namic and distributed networked system that uses wireless

connectivity and is composed of a wide range of uniquely

identifiable embedded computer-like devices. One of the es-

sential elements of the IoT paradigm is the wireless sensor

network (WSN). WSNs are composed of smart-sensor nodes

that monitor their environmental conditions, report sensor

data, and perform appropriate actions in response to the

surrounding circumstances.

However, these sensor nodes suffer from resource con-

straints such as processing power, memory, and energy sup-

ply. Moreover, because of the absence of appropriate high-

level abstractions to simplify the programming of WSNs, ap-

plication development remains challenging. In the IoT do-

main, “If-This-Then-That” is an example of an abstraction.

It is a simple rule that triggers an action if a particular event

occurs. For example, “If the room temperature increases,

then regulate the air conditioner to cool the room.” However,

the interaction between the two devices involved has a secu-

rity issue. Decisions are taken by considering only the output

of the devices without observing whether their current oper-

ational state is normal or on a state of misbehaving. Such

incomplete specifications will lead to inaccurate and unreli-

able sensor readings that may lead to incorrect decisions and

even to real-world damage. Indeed, sensor nodes are often

exposed to open or hostile environments. This makes it easy

for attackers to compromise some of the sensor nodes and

manipulate the integrity of the sensed data, e.g., by inject-

ing fake packets. As far as we know, the area of false-data-

injection attacks (FDIAs) detection for IoT is yet to receive

the attention it deserves. Most previous intrusion detection

methods proposed for IoT, particularly for WSNs, focus only

on specific types of network attack. Few approaches have

included an efficient, adaptive WSN intrusion-detection ap-

plication that considers methods for programming the sensor

nodes.

To answer these challenges and to guarantee reliable mon-

itoring in WSNs, we propose a new hierarchical framework

based on fuzzy logic for detecting misbehaving nodes in

event-condition-action (ECA) rule-based WSNs. Our contri-

bution is to provide an integrated solution for programming

the sensor nodes and distributedly detecting misbehaving

nodes in hierarchical heterogeneous WSNs. By controlling

the sensor nodes according to a set of ECA rules, we can

better express network behaviors and detect malicious nodes

while considering failed nodes. Identification of failed nodes

is the first step in countering the threats against WSN reli-

ability. In this paper, we consider that when a node fails, it

stops sensing the environment and sending report messages.

Therefore, based on a preliminary analysis of potential fail-



ure in sensor nodes, the values for newly collected sensed

data are further analyzed to increase the attack detection

rate and reduce the false positive rate. To achieve this, we

use a fuzzy logic module [1] to treat the ambiguity in the

decision-making process. It arrives at a conclusion based

on spatiotemporal (ST) and multivariate attribute (MVA)

sensor correlations to distinguish malicious sensor data from

other anomalies. This proposed fuzzy logic-based detection

is our first contribution in this paper. It can better detect

FDIAs attacks because the rule base contains a better set of

rules.

Because of the various limitations of synthetic datasets, in

this paper, we use a specialized real-world dataset for WSNs

that was collected to evaluate the detection efficiency of our

approach under realistic conditions. The evaluation involves

real WSN data rather than simulated data, and this is our

second contribution in the paper. Following our experiments

with the proposed framework, we stress the significance of

considering fuzzy logic and the sensor correlations to achieve

a higher detection accuracy, which has been neglected in pre-

vious studies. Our experiments demonstrate that our ap-

proach can provide high detection accuracy with low false-

alarm rates. We also show that our approach performs well

when compared to two well-known classification algorithms.

The remainder of this paper is organized as follows. We

provide an overview of existing approaches in Section 2. Sec-

tion 3 describes some preliminary ideas before introducing

our approach. Our proposed scheme is presented in Section

4. Our experiments and results are presented in Section 5,

together with a performance evaluation. Finally, Section 6

concludes the paper and describes possible future work.

This paper is a revised version of a paper entitled Hierar-

chical Abnormal-node Detection using Fuzzy Logic for ECA

rule-based Wireless Sensor Networks by the same authors.

The earlier version was presented at the IEEE 23rd Pacific

Rim International Symposium on Dependable Computing

(PRDC) [2].

2. Related Work

Failures and network detections for IoT systems have been

explored a lot over decades. However, as far as we know,

the area of FDIAs for WSN is yet to receive much atten-

tion. Moreover, they usually rely on using precise values to

specify anomalies thresholds and ignore consideration of the

dependencies that exist between sensor data. Indeed most

of the exisitng works uses either ST correlations, and few

have considered the MVA correlations. In [3,4], the authors

use spatial correlation to detect events within WSNs, with-

out considering the possibility of the presence of malicious

or failed nodes. Therefore, the false-alarm rate is high be-

cause malicious or abnormal readings are also considered as

events. In [5], the authors propose distributed anomaly de-

tection by assuming an environment monitored by homoge-

nous sensors. A monitored area should involve not only a set

of homogenous sensors but also some heterogeneous sensors.

By capturing the MVA sensor correlations, we can confirm

whether the attributes collectively imply an anomaly.

Moreover, the detection architectue plays an important

role the the accuracy of the analysis. In [5], the authors

adopt a traditional, centralized approach to detection. It

needs to collect a significant volume of sensed data. The

larger volume of the collected data generated by centralized

detection, results in lack of scalability and usually introduces

a delay between the moment the data is collected and when

the data intrusion system can have access to them. In [4],

a rule-based distributed fuzzy inference system for WSNs is

proposed that uses the spatial correlation (ST) from the ob-

served sensor readings, to identify the occurrence of events.

Their experimental results showed that using a fuzzy logic-

based distributed detection improves the accuracy of the

event detection. However, each node was required to ex-

change and process a significant amount of data from neigh-

boring nodes. Therefore, communication and computation

overheads are introduced, which will decrease the usage time

of the sensor nodes’ batteries.

Nevertheless, none of these approaches considered methods

for developing adaptive WSN applications. However, a few

proposals for efficient WSN applications consider methods

for programming the sensor nodes. In [7], the author intro-

duces increased flexibility in programming WSNs, but the

proposed solution involves significant overheads. In [8], an

ECA rule-based model is used to describe business rules for

sensor nodes, which are designed to express service-oriented

business logic in a compact form.

Concretely, we propose a new integrated approach for

programming the sensor nodes and distributedly detecting

the misbehaving-nodes in hierarchical heterogeneous WSNs.

The detection process is controlled by ECA rules, and the

spatiotemporal semantics correlations of heterogeneous sen-

sor readings are considered in the decision analysis.

3. Preliminaries

In this section, we describe the characteristics of our pro-

posed framework and discuss some assumptions about the

monitoring environments considered in this paper.

3.1. System model

An environmental monitoring application in a WSN is de-

fined as an application that monitors the real world and is-



sues a report whenever an event of interest occurs. The appli-

cation for environment monitoring considered here has sev-

eral heterogeneous sensor nodes deployed wirelessly within

the monitored areas. This paper addresses the network-

Figure 1: Hierarchical distributed WSN based on two-level

clustering

scalability issue by adopting a hierarchical, distributed WSN

topology based on two-level clustering. Figure 1 depicts the

topology of this hierarchical network. To implement such

a thorough monitoring system, n sensor nodes (S1, S2,. . . ,

Sn) called cluster members (CMs), are grouped into a ho-

mogenous group according to their type. Each homogeneous

group is controlled by a cluster aggregator (CA), who is re-

sponsible for all communications between the CM nodes and

the upper level of the hierarchy. These homogenous groups

are separated into clusters, each covering a different area.

Each cluster should include one cluster head (CH), who is

responsible for all communications between the CA nodes

and the base station (BS). All the sensor nodes have two

primary functionalities: i.e., environmental monitoring and

data aggregation. Each CM monitors the environment, col-

lects newly sensed data and reported to the higher level.

Each CA and CH aggregates the received reports from the

lower level (CM and CH, respectively) and then send a com-

bined report to a higher-level node (CH or BS, respectively).

By adopting this topology, the network scalability for large-

scale WSNs can be achieved. Although several complex

and innovative clustering techniques have been proposed for

WSNs, we consider a very simple clustering technique for en-

vironmental monitoring in WSNs. The clustering formation

is based on a defined distance threshold between the sensor

nodes.

In our WSN, the sensor nodes are controlled according to

a set of ECA rules. ECA rules are widely used for controlling

an environment and act to control the system configuration.

ECA rules comprise a set, whereby each rule in the set reacts

to a detected event by evaluating a condition and executing

an action whenever the event happens and the condition is

verified [9]. In our system, the set of ECA rules describe

the behavior of the sensor nodes and perform the required

actions only when the relevant events happen and their con-

ditions are verified. The ECA rules are independent of other

rules in the system (fuzzy rules). The structure of each rule

is ON Event IF Condition THEN Action.

3.2. Permanent Failures and FDIAs model

Our objective is to detect misbehaving sensor nodes. In

this paper, we mainly focus on detecting permanent failures.

A permanent failures is when there is a hardware defect, and

the sensor node completely shuts down. We also cover the

problem of malicious attack detection. Precisely, the issue of

FDIAs detection. FDIAs is a significant threat and crucial

for the case of systems where the actuator takes decisions

based on the collected sensor data [10]. Furthermore, it is

known for its difficulty to be detected by the conventional

IDS. If the attacker can recognize the standard conditions

of the monitored environment or some system parameters,

he can easily inject false data into the regular sensor read-

ings without being detected by the IDS. In this paper, we

consider two types of realistic attack goal such as random

FDIAs, in which the attacker aims to compromise the sensor

readings data randomly, and specefic FDIAs, in which the

attacker injects a specific value within the pre-defined range.

3.3. Assumptions

Our research is based on the following assumptions.

1) Every sensed environment is characterized by its own

environmental conditions.

2) All clusters must be composed of both homogeneous and

heterogeneous sensor nodes, to maintain high event-detection

accuracy.

3) N-modular redundancy is used to achieve a dependable

and fault-tolerant WSN. The considered WSN must satisfy

a good distribution of the clusters, where at least three sen-

sor nodes for each type must be deployed within one cluster

(i.e., triple modular redundancy (TMR) is a particular case

of N-modular redundancy).

4) The attacker knows the physical conditions of the mon-

itored environment.

5) While some sensor nodes may be compromised, we as-

sume that most of the sensor nodes will remain trustworthy.

Moreover, we assume that any sensor node might become

compromised and behave maliciously, except for the BS, CHs

and CAs.

4. Proposal

The proposed approach needs to consider changes in the

environmental conditions, perform appropriate actions to

identify malicious and failed nodes, and report such nodes to

the BS. In this paper, we propose a new framework for de-

tecting malicious nodes in a heterogeneous WSN while con-

sidering the failed nodes. The proposed approach adopts

a hierarchical detection framework based on fuzzy logic for

ECA rule-based WSN. By defining a set of ECA rules, we can

describe the behavior of the sensor nodes and identify misbe-



having nodes. Figure 2 shows an example of the ECA rules

used for our WSN. If the sensed data value is outside a pre-

defined range, this node is reported as an misbehaving node.

Alternatively, if there is no data reported from a sensor node,

then this node is reported to the BS as having failed. How-

ever, it is infeasible for the sensor node to decide that any

abnormal data detected originates from attacks using only

simple rules and the raw sensor node data. Therefore, based

on the preliminary failure analysis, the value of sensed data

should be further analyzed to increase the malicious-node

detection rate and reduce the false-positive rate. To achieve

this, we add fuzzy logic to the detection module to treat the

ambiguities in the decision-making process. By considering

the MVA and ST sensor correlations, the fuzzy rule base will

contain a better set of rules to derive a conclusion about

whether a sensor node is malicious.

Figure 2: ECA rule-based WSN description example

An overview of our proposed approach is depicted in Fig-

ure 3, which shows the various sensor-node modules and the

flow chart for processing misbehaving nodes according to the

role of the CH and CA sensor nodes. Each CM monitors the

environment and collects newly sensed data. Each CA and

CH aggregates the received reports from the lower level (CM

and CH, respectively) and then sends a combined report to

a higher-level node (CH or BS, respectively).

Each sensor node has a misbehaving-node detection mod-

ule. This module has two submodules. The first is a failure-

detection module that checks whether there are permanent

failed nodes. Sensor nodes may be prone to many types of

hardware failure induced by a power surge, weak batteries,

loss of signal, or corruption of the external memory. As a

result, the sensor nodes will be unable either to sense data

or report sensed data to higher-level sensor nodes. If a node

stops sending reports, the higher-level node concludes that

the sensor node has incurred a permanent failure and reacts

by reporting it to the BS. The BS then may issues instruc-

tions about reorganizing the grouping or clustering arrange-

ments.

The second misbehaving-node detection submodule is

a fuzzy-based detection module that checks for mali-

cious nodes. The detection process involves three stages

of detection: i.e., local detection, group detection, and

cluster detection. As illustrated in Figure 3, each CM mon-

itors the environment and collects newly sensed data. The

CM then analyzes this data by executing the fuzzy-based

local-detection process. This local decision about malicious-

ness will be reported to the CA. After the CA receives all

the reports from its CMs (homogenous sensor nodes), the CA

executes the fuzzy-based group-detection process, to create

a more accurate decision. By considering the CMs’ local de-

cisions in its group, the CA generates the group decision and

reports it to the CH. After the CH receives all the reports

from its CAs (heterogeneous sensor nodes), the CH executes

the fuzzy-based cluster-detection process. This process’ final

decision will be reported to the BS. The three fuzzy detection

modules are described in detail in the following subsections.

Figure 3: Hierarchical detection modules according to the

role of each sensor node

4.1. Local detection by the CMs

Each CM senses environmental events and executes the

local detection process to check whether the newly collected

data is subject to attack.

4.1.1. Temporal average similarity

The local detection module considers temporal semantic

correlations to derive a crisp local decision. Every CM main-

tains a short-term history of the collected sensed data. This

aggregation of data is used to construct a sliding time win-

dow containing the most-recent sensed data in the sensor-

node stream. In the literature of stream processing, sliding

time windows are a familiar concept [11]. In this paper, we

use the sliding time window to profile the behavior of the sen-

sor node readings over time. The sensed data will be time

correlated and the variation range will usually be small in

the short term. The sensed data contains an k-second times-

tamp, which indicates the time at which the sensor node

reported the reading. The sensor node time-series samples

are grouped into (l+1)-second frames to compose the sliding

time-window model, where l ∈ {0, p}. As time passes, the



window slides in one-frame increments over the sensor node

time series. Each frame groups the raw sensor node-data

samples according to a certain number of epochs ek, where

k ∈ {1, o} . After setting the sliding time window, we apply

a summarization function to extract the relevant informa-

tion about sensor-node temporal similarity. For example, we

consider a sliding window composed of three frames. Each

frame is composed of three epochs. f0 is the frame containing

the current epoch. f1 is the frame for the o previous epochs.

Let l + 1 be the size of the sliding time window and k be

the number of epochs within each frame. For each frame f−l

within the window, we calculate the temporal similarity be-

tween the frame f−l and the current frame f0. The temporal

similarity is given by equation (1).

q(f−l, f0) =
1

(1 +
√∑o

k=1 Si(ek)f−l − Si(ek)f0)
2))

(1)

The average similarity between the current frame data and

the data in the window is then calculated. As indicated in

equation (2), the average similarity is calculated by adding a

weighted summation to the calculation. The closer the frame

is to the current time frame, the more it is correlated. More-

over, the smaller the average similarity, the more the frame

at the current time deviates from the historical sensor node

data.

Q(f0) =

∑p
l=1 wlq(f−l, f0)

l + 1

where the weight: wl =
1

(eo)f0 − (eo)f−l

(2)

4.1.2. Fuzzification and Defuzzification

After the CM finishes the calculation of the average tem-

poral similarity, it conducts the fuzzy local-detection pro-

cess. Together with the temporal average-similarity value

obtained, both the current raw sensed value Si(t) and its ac-

tual time of collection are fuzzified through predefined mem-

bership functions (MFs). The monitored environment can

differ for each time-of-day segment. As a result, the input–

output response will also differ depending on the time of day.

For example, the light intensity and temperature during the

day tend to be higher than at night. Figure 4 illustrates

details of the design of the adopted scheme for local detec-

tion of FDIAs. In our system, we consider an environment

Figure 4: Local detection scheme for CMs

Table 1: Rule base for temperature sensor nodes

Rule ID Temperature TAS CT Malicious

1 VL S Mo H

2 VL B A H

3 MH B A L

4 MH S N H

5 LM S N M

6 LM S A H

...
...

...
...

...

32 MH B M L

monitored by sensor nodes for temperature, humidity, light,

and smoke density. For each type of sensor node, the local

detection module takes three linguistic variables as its input.

The sensed-value input will be one of temperature, humidity,

light, or smoke. In the fuzzification process, the three crisp

values are converted into degrees of membership by applying

the corresponding MF. The MF for the temperature variable

has four semantic values: i.e., very low VL, low-to-medium

LM, medium-to-high MH, and very high VH. The MFs for

the humidity, light, and smoke variables have three seman-

tic values: i.e., low L, medium M, and high H. The MF for

average temporal similarity TAS has 2 semantic values: i.e.,

small S and big B. Finally, the MF for the current time CT

has 4 semantic values: i.e., night N, morning Mo, afternoon

A, and evening E. The confidence about malicious detection

is defined as the output. The MF for the fuzzy output vari-

able is defined in terms of three levels: i.e., low L, medium

M, or high H.

After being fuzzified, the fuzzy inputs are then fed into the

fuzzy inference process. The fuzzy rule base manages the in-

ference to yield a fuzzy output. A fuzzy rule base comprises

a set of rules designed to decide the probability of the node

being compromised. By considering the ST and MVA sensor

correlations, we use heuristics to build the rule base for our

malicious-detection experiments. However, if more-complex

attacks are to be detected, domain experts or machine learn-

ing techniques could be used to define the rule base.

The form of these rules is “IF premise, THEN consequent,”

where the premise is the fuzzy input variables connected by

logical functions and the consequent is the fuzzy output vari-

able. An example might be “IF temperature is H AND TAS

is S AND CT is N, THEN Malicious is H.” The full rule base

for the four types of sensor node involves 104 rules. The rule

base of temperature sensor nodes in WSNs is shown in Table

I. This rule base contains only the rules involving linguistic

variables based on the sensed values from temperature sen-

sor nodes. The rule base for the other sensor node can be

constructed similarly. The temperature sensor node’s rule



base involves only 32 rules and the light, smoke-density, and

humidity sensor nodes’ rule bases each involve only their own

subset of 24 rules. Finally, the defuzzifier converts the output

fuzzy variable back to a crisp value, which is used to make a

local decision and send a report message to the CH for the

further analysis that eventually leads to a groupl decision.

Figure 5: Group detection scheme for the CA

4.2. Group detection by the CA

The group detection module operates at the CA level by

considering ST correlations. In this detection module, a more

accurate decision is made by including the local decisions of

multiple homogenous CMs located in the same group within

the same cluster. After receiving a local decision message

from a CM, the CA stores the crisp decision value. After

collecting all the CMs’ local decisions, the CH executes the

cluster-detection process for each CM node to give a group

decision about the node’s maliciousness. Figure 5 illustrates

the details of the design of the adopted scheme to detect ma-

licious nodes within a group. The group detection module

uses two inputs: i.e., every individual CM’s crisp local deci-

sion and all the CMs’ local decisions. The fuzzifier converts

the crisp values into degrees of membership by applying the

corresponding MF. After being fuzzified, a sigma-count fac-

tor [12] is used as a measure of fuzzy cardinality to quantify

the CMs’ local decisions:∑
Count(F ) =

∑
µF (Si) (3)

Here, F is a fuzzy set characterized by an MF µF (Si), which

gives the degree of similarity for S, and Si = (S1, S2,. . . ,Sn)

is the set of CMs. Finally, F is the property of interest re-

lated to the sensor-node’s local decision, e.g. “Misbehavior

level is high.” A fuzzy majority quantifier is then used to

obtain a fuzzified indication of the consensual CMs’ local

decisions. For a more accurate decision, we use the Most

quantifier to characterize the fuzzy majority of the CMs’ lo-

cal decisions [13]:

umost(

∑
Count(F )

|Si|
) = umost(

∑
i µF (Si)

n
)

where umost(x) =


0 if x <= 0.3;

2x− 0.6 if 0.3 < x < 0.8

1 if x >= 0.8

(4)

Next, the fuzzified inputs and the quantified CMs’ local de-

cisions are fed into the fuzzy inference process. The fuzzy

rule base comprises a set of rules designed to decide about

the maliciousness of the CM. An example of the format of

the rule is “ IF Malicious is H AND Most(CMsDecision) is

L THEN Malicious is H.” Fuzzy inference combines the rules

to obtain an aggregated fuzzy output. Finally, the defuzzi-

fier converts the fuzzy output variable back to a crisp value

that will be used to make a group decision and reported to

the CH.

4.3. Cluster detection by the CH

Cluster identification is processed in the CH level by con-

sidering the ST and MVA sensor correlations. In this detec-

tion module, a more accurate decision is made by including

the group decisions of multiple heterogenous CAs located in

the same cluster. After receiving a group-decision message

from a CA, the CH stores the crisp decision value. After col-

lecting all the CA group decisions, the CH performs the fuzzy

inference for each sensor node to give the cluster decision

about the node’s maliciousness. The detection mechanism

is similar to that for group detection. However, compared

to the group decision, the cluster decision considers the ob-

servations from heterogeneous-sensor nodes in addition to

only homogenous-sensor nodes. The CH’s fuzzy rule base

comprises a set of rules designed to decide about the CM’s

maliciousness. An example of the rule might be “IF Mali-

cious is L AND Most(CAsDecision) is L THEN Malicious

is L. If malicious nodes are detected, the CH sends a report

message to the BS.

5. Experimental Results and Analysis

There are various limitations to using synthetic datasets

and none of the previously proposed misbehaving-node-

detection approaches have yet been developed as deployable

systems. In this paper, we evaluate the detection efficiency

of our approach under realistic conditions. Sixteen sensor

nodes were deployed in our laboratory using the Raspberry

Pi 2 Model B microcontroller platform. Each sensor node

is equipped with one temperature sensor module, one digi-

tal light-intensity sensor, one smoke-density sensor, and one

humidity sensor, which gives a total of 64 sensors. The sen-

sor nodes were divided into three clusters separated from

each other and with different environmental conditions. One

cluster comprised five sensor nodes located in our laboratory

room, the second was composed of five sensor nodes located

in a server room, and the third was composed of six sensor

nodes located in a kitchen corner.

5.1. WSN dataset creation and description

To evaluate the detection efficiency of our approach, we

collected a real-world dataset over a period of one month.

New sensor readings were collected every minute, giving a



Figure 6: Comparison of the detection results with a single correlation or a combination of correlations in each cluster

total of 2.787.776 sensor readings. The collected dataset con-

tains 93% real normal readings, 4.34% real failures and 2.66%

artificial injected false sensor readings.

This dataset was obtained after we preprocessed the col-

lected sensor node data. There were two significant chal-

lenges in the preprocessing. Because of individual failures,

some sensor nodes had missing data for epochs in the dataset.

This meant that data entries would not always be consecu-

tive. Therefore, the value “NULL” was used to substitute for

each missing sensed value in an epoch. Moreover, to inves-

tigate the performance of our approach, malicious readings

were injected to the collected dataset according to the attack

patterns described in section 3.2. We altered the readings for

a certain number of sensor nodes by a certain amount in spe-

cific time slots.

5.2. Evaluation of results

Our proposed approach perfectly detected all the failed

nodes in our deployed WSN. However, to evaluate our ap-

proach in terms of malicious-node detection, five perfor-

mance metrics are used in this paper: i.e., true positive rate

(TPR), true negative rate (TNR), false positive rate

(FPR), false negative rate (FNR), and accuracy (A). Fig-

ure 6 summarizes the results of the metrics for each cluster.

Even though the environmental conditions for each cluster

were different, our proposed approach achieves a high accu-

racy with a small FPR for the task of analyzing the sensor

readings to determine whether the sensor nodes were be-

having normally or had been exposed to attacks. The rate

of correctly classified readings (TPR and TNR) was higher

than the number of incorrectly classified readings (FPR and

FNR).

In addition, to stress the significance of considering sen-

sor correlations and the hierarchical architecture in achieving

better detection accuracy, we conducted other experiments

whereby only a single correlation or a combination of two-

correlations are considered. The experimental results show

that our approach produces better detection results com-

pared to the other cases. The first case is where each CM

performs its local detection and then send its decision di-

rectly to the BS. That is, only temporal correlation was con-

sidered. For the only spatial correlation case, only the group

detection is performed by the CA. And as for the ST cor-

relation, only the local and group detections are performed.

The detection results show that our hierarchical approach

(ST +MVA correlations) demonstrates higher accuracy and

lower false-alarm-rate than in the other cases.

Figure 7: Accuracy results in cluster 2 where a single corre-

lation or a combination of two-correlations are considered

Figure 7 depicts details of accuracy results for each sen-

sor node type in cluster 2. As shown, not all sensor nodes

types show high accuracy, especially when only temporal or

spatial correlation is considered. For example, the average

accuracy of the light sensor nodes in Cluster 2 is low, because

the light intensity in the server room is usually very low but,

according to the defined fuzzy rules for the morning period,

we should expect high light intensity. As a result, the false

negative rate was high. However, the results show that we

can decrease the false-alarm rate and improve the detection

accuracy by including more than one correlation in the deci-

sion process. In our approach, when most of the sensor nodes

show abnormal readings, it implies that they are not under

malicious attack but there may be an event in the monitored

environment. Therefore, the detection accuracy was higher

when the ST and MVA sensor correlations are included. To

Table 2: Incorrect classification introduced by Naive Bayes,

J48 and our proposed approach

Näıve Bayes J48 Proposed approach

Cluster 1 18.56% 1.21% 1.43%

Cluster 2 13.72% 0.67% 1.65%

Cluster 3 50.84 % 1.39% 2.45%



further understand the behavior of our approach, we com-

pared it to two well-known classification algorithms: a näıve

Bayes classifier and a j48 decision tree. Fuzzy logic is more

appropriate for describing WSN behavior than these two al-

gorithms. This is unlike Bayes classifiers and decision trees,

where values are considered to be discrete, fuzzy logic works

with continuous values, which are precisely what the sensor

readings are. We used the WEKA data-mining tool to run

this experiment. The attribute values supplied to the clas-

sification algorithms were the same raw input data used for

the fuzzy module in our approach (i.e., temperature, light in-

tensity, humidity, smoke density, and their average temporal

similarity.) In the evaluation, we performed a 10-fold cross

validation for both classification algorithms.

Table 2 shows the number of incorrectly classified instances

for the three clusters. Both algorithms wrongly classified

a certain number of instances. Note that näıve Bayes in-

troduced the most incorrect classifications. Our proposed

approach had a lower percentage of incorrectly classified in-

stances than näıve Bayes, but it was higher than that for

the J48 decision tree. However, compared to these other

two classification algorithms, fuzzy logic is better suited to

WSNs, not only because it works with continuous readings

of the sensor nodes, but also because it only needs to specify

MFs and rules, which is more straightforward and computa-

tionally more efficient than having to build complex proba-

bility models. Besides, näıve Bayes and J48 not only needs

time to train their model, but also they need to split the

dataset into testing and training data. While our approach

does not need any training data to perform the detection

process.

6. Conclusion

In this paper, we propose a novel hierarchical approach

to detect misbehaving nodes in WSNs. The proposed ap-

proach uses fuzzy logic for ECA rule-based WSNs to de-

tect malicious nodes while considering failed nodes. The

ST semantics of heterogeneous sensor readings are consid-

ered in the decision process to distinguish malicious data

from other anomalies. Our experiments on real-world sensor

data demonstrate that our approach can provide high detec-

tion accuracy with low false-alarm rates. The experiments

also support the hypothesis that including ST and MVA sen-

sor correlations in the decision process further improves the

malicious-nodes detection accuracy. In addition, when com-

pared to two well-known classification algorithms, our pro-

posed approach performed well. In our future work, we plan

to implement a mechanism that derives the fuzzy rule set

automatically, perhaps via machine learning techniques, to

improve the detection accuracy and decrease the false-alarm

rate. In addition, we aim to further investigate the detection

accuracy by considering the setting of the thresholds such as

the distance-based clustering.
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