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Abstract The RankClus framework accurately performs clustering using ranking-based graph clustering tech-

niques. It integrates graph ranking algorithms into graph clustering procedures to improve the clustering quality.

However, this integration incurs a high computational cost since RankClus repeatedly computes the ranking algo-

rithm for all nodes until the clusters converges. To overcome this limitation, we present a novel RankClus algorithm

that reduces the running time. By dynamically updating ranking results, our proposal reduces the number of

computed nodes and edges. For further improving the efficiency, we also present a parallel implementation of our

proposed algorithm by using thread-based parallelization. We experimentally verify using real-world datasets that

our proposed methods successfully reduces the running time while maintaining the clustering quality of RankClus.
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1 Introduction

How can clusters be computed within a short computa-

tion time for large bi-type information networks? Graphs

can handle schema-less and complex real-world phenomena.

They represent data entities and their relationships using

nodes and edges, respectively. Due to recent advances in in-

formation sciences and web technologies, large-scale graphs

are ubiquitous in diverse application domains from the In-

ternet to biological networks [10]. As graph sizes are con-

stantly increasing, it is apparent that techniques to analyze

large graphs are needed. To understand large-scale graphs,

graph cluster analysis (community detection) is an impor-

tant data mining tool in various research areas such as web

engineering, social analysis, and bioinformatics. A cluster

can be regarded as a group of nodes that are densely con-

nected with each other but are sparsely connected between

different groups. By discovering the hidden cluster struc-

tures included in real-world graphs, not only can raw data be

overviewed but also the interrelationships among nodes can

be discovered. Consequently, identifying clusters included in

a graph has become an interesting and important problem.

The problem of finding clusters in a graph has been stud-

ied for several decades in many areas, especially in physics

and computer science. Traditional clustering algorithms such

as graph partitioning [9], modularity clustering [10], [11], and

density-based methods [12], [13], [16] are natural choices for

this problem. Basically, these algorithms are designed to

compute homogeneous graphs. However, real-world graphs

are generally more complex and each node can have an

attribute on various real-world applications. Thus, recent

applications model such graphs as bi-type information net-

works [15], which are special class of heterogeneous graphs.

Unfortunately, traditional algorithms can not handle bi-type

information networks since they ignore attributes attached

to each node, and explore only densely connected subgraphs.

Thus, graph clustering on bi-type information networks re-

mains a challenging task.

To achieve graph clustering on bi-type information net-

works, Sun et al. presented the RankClus framework [15].

RankClus initially divides node attributes on bi-type infor-

mation networks into two groups: target type and attribute

type. Then, it clusters target-type nodes using attribute-

type nodes as support information. Specifically, RankClus

integrates a clustering procedure with a node ranking tech-

nique such as PageRank [3] or HITS [5] to characterize target-

type nodes by attribute-type nodes. The framework per-

forms clustering and ranking consecutively. It gradually im-

proves the clustering quality and ranking quality in an it-

erative manner. By using attribute-type nodes as support

information of target-type nodes, RankClus successfully un-

covers highly accurate clusters included in the target-type



nodes [15].

Although the RankClus framework can effectively un-

cover clusters on various bi-type information networks such

as bibliographic networks, web graphs, and biological net-

works, the framework requires expensive computational costs

to handle large-scale bi-type information networks because

the RankClus framework iteratively performs clustering and

ranking procedures until stable clusters are found. Specifi-

cally, the framework starts its computation from randomly

partitioned clusters, and then obtains a rank score for each

node in a graph by a node ranking algorithms such as PageR-

ank or HITS. Next, the framework clusters target-type nodes

again based on the assumption that a node appropriate for

the cluster has a higher rank score. Otherwise, it has a lower

rank score. Following the above assumption, RankClus per-

forms traditional clustering [6] by the rank score of each node

in the clusters. Finally, RankClus framework performs rank-

ing and the clustering procedures iteratively until the clus-

ters converge. The RankClus framework must compute the

rank scores of all nodes in each ranking procedure. Each

procedure requires O(n2) times, where n is the number of

nodes in a bi-type information network. Hence, RankClus re-

quires exhaustive computational costs to find converged clus-

ters in a large-scale bi-type information networks. Recently,

Yamazaki et al., proposed edge-pruning approaches [17], [18]

to reduce the computational costs of the RankClus frame-

work. However, the improvements of efficiency are limited

and these approaches sacrifice clustering quality compared

to the RankClus framework.

To tackle this problem, we present a novel algorithm for

RankClus that effectively reduces the exhaustive computa-

tional costs without degrading the clustering quality.

2 PRELIMINARY

This section formally defines the notations and briefly in-

troduces the RankClus framework.

2.1 Bi-type Information Network

We first define a bi-type information network, which is an

input data model of RankClus and our proposed algorithm.

［Definition 1］（Bi-type Information Network） Let G =

⟨V,E⟩ be a bi-type information network, V and E are defined

as V = X ∪Y and E = {⟨oi, oj⟩|oi, oj ∈ X ∪Y }, respectively.
Note that X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are

two sets of nodes such that X ∩ Y = ∅, where m = |X| and
n = |Y |.
A bi-type information network is defined as a special class of

a heterogeneous graphs. Based on Definition 1, the RankClus

framework assigns two types to X and Y : target type and

attribute type. RankClus framework clusters only the target-

type nodes using attribute-type nodes as a clustering guide.

Figure 1 is a conference–author collaboration network

modeled as a bi-type information network in Definition 1.

The graph has two types of nodes X and Y that represent

sets of conferences and authors, respectively. If author yj

has published at least one paper at conference xi, nodes xi

and yj are linked. Also, two authors yi and yj are linked

only if yi is a co-author of yj , and vice versa.

Here, we define the weight of an edge between nodes oi and

oj as woi,oj , and we represent an adjacency matrix of a bi-

type information network is presented as W(m+n)×(m+n) =

{woi,oj}. For simplicity, we decompose W(m+n)×(m+n) =

{woi,oj} into four blocks: WXX , WXY , WY X and WY Y .

Each block is a subgraph of the given network among sub-

script types. That is, W is defined as:

W =

(
WXX WXY

WY X WY Y

)
.

In Figure 1, matrixes WXY and WY Y are defined as:

WXY (i, j) = pij , for i = 1, 2, . . . ,m; and j = 1, 2, . . . , n,

where pij is the number of papers published by author yj at

conference xi.

WY Y (i, j) = aij , for i = 1, 2, . . . ,m; and j = 1, 2, . . . , n,

where aij is a number of papers written by authors yi and

yj . Clearly, WY X = WT
XY and WXX = O.

Figure 1 Example of a bi-type information network: This graph

has two types of nodes X and Y , which represent sets of

conferences and authors, respectively. If author yj has

published at least one paper at conference xi, there is a

link between node xi and yj . Additionally, two authors

yi and yj are linked only if yi is a co-author of yj , and

vice versa.

2.2 RankClus Framework

The RankClus framework [15] finds clusters from the target

nodes using the attribute nodes as a guide for the clustering

procedure. To characterize target-type nodes, RankClus per-

forms ranking procedures for all nodes included in a given bi-

type information network before extracting clusters. By us-

ing rank scores obtained by the ranking procedure, RankClus



Figure 2 Example of subgraph construction using Figure 1:

In this example, we set K = 2 and partition X =

{x1, x2, x3, x4} into two subsets {x1, x2} and {x3, x4}.
Then a subgraph is constructed for each subset.

Algorithm 1 RankClus

Input: G = ⟨V,E⟩, and K

Output: Xi(i = 1, 2, · · · , K), r⃗X , and r⃗Y for each Xi

// Step 0: Initialization

1: t = 0.

2: Generate initial K clusters X
(0)
1 , X

(0)
2 , . . . , X

(0)
K .

3: repeat

// Step 1: Ranking for each cluster

4: Construct subgraphs Gi(t) from Xi(t), and Y .

5: for i = 1 to K do

6: for each xj ∈ Xi and ys ∈ Y do

7: Compute rank score r⃗X(j, i) and r⃗Y (s, i).

8: end for

9: end for

// Step 2: Get new attribute

10: for i = 1 to K do

11: for each xj ∈ Xi do

12: Estimate πj,i by Definition 2.

13: end for

14: Determine a centroid vector s⃗Xi
.

15: end for

// Step 3: Assign xj to cluster

16: for each xj ∈ X do

17: for i = 1 to K do

18: Compute a distance D(j, k)

19: end for

20: Obtain k0 = arg min
k

D(j, k).

21: X
(t+1)
k0

= X
(t+1)
k0

∪ {xj}.
22: end for

23: t = t + 1.

24: until No clusters are updated.

then clusters target-type nodes. Once a clustering result is

obtained, RankClus performs the ranking procedure again.

It iteratively continues the above processes until stable clus-

ters are obtained.

The pseudo-code of the RankClus framework is shown in

Algorithm1. Algorithm 1 takes bi-type information network

G and a number of clusterK as inputs. The RankClus frame-

work performs the following workflow until its clustering re-

sults converges:

(1) Initialization: Randomly partition target-type

nodes into K clusters and construct K subgraphs.

(2) Ranking procedure: Computes rank scores of all

nodes in each subgraph.

(3) Clustering procedure (i): Constructs a K-

dimensional vector for each node in target-type from the rank

scores computed in (2).

(4) Clustering procedure (ii): Cluster a set of K-

dimensional vectors obtained by (3).

(5) Repeat (2) to (4) until the clustering results con-

verge.

2.2. 1 Ranking procedure

RankClus divides target-type nodes X into K clusters.

Then it then constructs K subgraphs. Let Xi be a subset of

X all of whose nodes are included in i-th cluster (1 <= i <= K).

Subgraph Gi is defined as Gi = ⟨Vi,Ei⟩, where Vi = {Xi∪Y }
and Ei = {⟨oi, oj⟩|oi, oj ∈ Xi ∪ Y }. That is, G =

∪K
i Gi.

Figure 2 shows an example of a subgraph where X is par-

titioned into {x1, x2} and {x3, x4}, and their corresponding

subgraphs are built.

Let r⃗X(x, k) and r⃗Y (y, k) be the rank scores of x ∈
X and y ∈ Y in Gk, respectively. For each subgraph,

RankClus performs an arbitrary node ranking method.

Hence,
∑

x∈X r⃗X(x, k) = 1 and
∑

y∈Y r⃗Y (y, k) = 1. Herein

the node ranking method is the Personalized PageRank

(PPR) algorithm [4]. Let r⃗PPR(i, k) ∈ R(m+n) be the rank

score vector for i ∈ V in Gk, b⃗ ∈ R(m+n) be a pref-

erence vector where each element is equal to 1
m+n

, and

P ∈ R(m+n)×(m+n) be a transition matrix obtained by nor-

malizing each column of W . PPR obtains a rank score vec-

tor r⃗PPR(i, k) by performing the following equation until

r⃗PPR(i, k) converges.

r⃗PPR(i, k) = αP r⃗PPR + (1− α)⃗b,

where α ∈ [0, 1]. Once r⃗PPR(i, k) is obtained for all sub-

graphs, the rank scores r⃗X(x, k) and r⃗Y (y, k) are computed

as:

r⃗X(x, k) =
r⃗PPR(x, k)∑

x∈Xk
r⃗PPR(x, k)

, r⃗Y (y, k) =
r⃗PPR(y, k)∑

y∈Y r⃗PPR(y, k)

2.2. 2 Clustering procedure

RankClus updates K partitions of X in the clustering pro-

cedure. First, it estimates the posterior probability πi,k that

represents the probability of target-type node xi belonging

to cluster k using the rank scores obtained in the ranking

procedure. The posterior probability is formally defined be-

low.

［Definition 2］（Posterior probability πi,k） Let πi,k be

the posterior probability of xi belonging to cluster k, πi,k

is defined as:



πi,k = p(k|xi) =
r⃗(X|Xk)(i, k)p(k)∑K
l=1 r⃗(X|Xk)(i, l)p(l)

,

where p(k) is the probability estimated by EM-algorithm,

and

r⃗(X|Xk)(x, k) =

∑n
j=1 WXY (x, j)r⃗Y (j, k)∑m

i=1

∑n
j=1 WXY (i, j)r⃗Y (j, k)

.

After that, the framework constructs K-dimensional fea-

ture vector sxi = {πi,1, πi,2, . . . , πi,K} for each xi ∈ X.

Then, RankClus determines K cluster centroids, which are

defined below:

［Definition 3］（Cluster centroid） Let s⃗Xi be a vector

that represents a cluster centroid of cluster Xi; s⃗Xi is de-

fined as:

s⃗Xi =

∑
x∈Xi

s⃗(x)

|Xi|
.

Finally, the RankClus framework updates K clusters by as-

signing xi ∈ X into a cluster Xk that shows the smallest

distance between sxi and xXi using the following definition.

［Definition 4］（Distance） Let D(i, k) be the distance be-

tween node xi and cluster Xk. D(i, k) is defined as:

D(i, k) = 1−
∑K

l=1 s⃗xi(l)s⃗Xk (l)√∑K
l=1 (s⃗xi(l))

2
√∑K

l=1 (s⃗Xk (l))
2

.

From Definition 2, estimating the posterior probability is

not expensive since we can get r⃗(X|Xk)(i, k) and p(k) in O(1).

Also, updating K clusters requires O(mK) times, which is

a smaller computational cost than the ranking part. Thus,

the clustering part does not have a dominant cost in the

RankClus framework.

3 Proposed Method

Our goal is to efficiently find clusters from target-type

nodes without sacrificing the clustering quality compared to

RankClus. Since the clustering procedure shown in the previ-

ous section does not have a dominant cost, we attempt to re-

duce the computational cost of the ranking procedure, which

entails exhaustive computations for all nodes and edges in-

cluded in a bi-type information network.

3.1 Basic Ideas

RankClus computes rank scores for all nodes included in

each subgraph Gi. Then the framework updates Xi ⊂ Vi by

following the clustering procedure. It should be noted that

RankClus iterates the ranking and clustering procedures un-

til the clustering results converge. Thus, each subgraph Gi

can be regarded as a graph that dynamically evolves Xi and

Ei in each clustering procedure. The RankClus framework

(1) inserts new nodes and edges into Gi, and/or (2) removes

several nodes and edges from Gi in each iteration.

The main idea underlying our proposed algorithms are to

handle the above dynamic graph property of the RankClus

framework. That is, in each iteration, each subgraph Gi

evolves by obtaining or detecting nodes through a clustering

procedure. To avoid an exhaustive computation of the rank-

ing procedure, our methods dynamically update the rank

scores only for nodes that are (1) newly inserted into Gi or

(2) removed from Gi after each clustering procedure.

We propose a dynamic rank score tracking that dynami-

cally maintains rank scores of each time-evolving subgraph

Gi. Clearly, our proposed algorithms increase the approx-

imation errors of rank scores because it partially computes

rank scores and inserts/removes many nodes. Thus, to re-

duce the approximation errors, we employ a dynamic PPR

computation technique [7] based on the Gauss-Southwell al-

gorithm [1], [2]. Our proposed algorithms attempt to re-

duce the computation time without sacrificing the clustering

quality of RankClus by dynamically updating only evolving

nodes.

3.2 Dynamic Rank Score Tracking

To reduce the computation cost of the ranking procedure,

our algorithm employs dynamic rank score tracking. Since

each subgraph Gi evolves after each clustering procedure, we

update the rank scores of nodes that are newly inserted or

removed from Gi. Otherwise, our algorithm reuses the rank

scores obtained before the clustering procedure. To perform

the above updates efficiently, we adopt a dynamic PPR com-

putation [7] based on the Gauss-Southwell algorithm [1], [2]

into the RankClus framework.

Suppose, subgraph Gi evolves as G0
i → G1

i → . . .Gt
i by

iterating the clustering procedures, where G0
i and Gt

i are the

initial subgraph and the subgraph after t-th iterations, re-

spectively. The Gauss-Southwell algorithm maintains t-th

rank score r⃗
(t)
PPR of Gt

i and its corresponding residual d⃗(t) as:

d⃗(t) = (1− α)⃗b− (I − αP )r⃗
(t)
PPR.

The goal of this algorithm is to minimize the residual d⃗(t),

i.e., d⃗(t) → 0, since r⃗
(t)
PPR converges when d⃗(t) = 0. To min-

imize the residual d⃗(t) after the t-th clustering procedure,

the algorithm picks the largest component d⃗
(t)
i included in

d⃗(t). Then it then computes r⃗
(t)
PPR and d⃗(t) using following

equations:

r⃗
(t)
PPR = r⃗

(t−1)
PPR + d⃗

(t−1)
i ei,

d⃗(t) = d⃗(t−1) − d⃗
(t−1)
i ei + αd⃗

(t−1)
i Pei,

where ei is a vector in which the i-th element is 1 and all

other elements are 0. As shown in the above equations, the

Gauss-Southwell algorithm propagates the largest residual

to its neighbor nodes to reduce the approximation errors.

Our algorithm continues the above updates until the largest

residual satisfies d⃗
(t)
i < ϵ. Consequently, this algorithm guar-

antees to have an error bound as ||r∗PPR − r
(t)
PPR|| <=

ϵ
(1−α)

,



Algorithm 2 Dynamic rank score tracking

Input: initial rank scores r⃗
(0)
PPR, initial residual d⃗(0).

Output: converged rank scores r⃗PPR and converged residual d⃗.

1: for t = 1, 2, ... do

2: Pick the largest component d⃗
(t−1)
i in d⃗(t−1).

3: while |d⃗(t)
i | >= ϵ do

4: Update r⃗
(t)
PPR and d⃗(t).

5: end while

6: end for

Algorithm 3 Proposed sequential algorithm

Input: G = ⟨V,E⟩, K, and ϵ

Output: Xi (i = 1, 2, · · · , K)

// Step 0: Initialization

1: t = 0.

2: Generate initial K clusters X
(0)
1 , X

(0)
2 , . . . , X

(0)
K .

3: repeat

// Step 1: Dynamic Rank Score Tracking

4: for i = 1 to K do

5: if t == 0 then

6: Compute r⃗PPR(v, i) for all v ∈ Xi ∪ Y .

7: Compute residual d⃗(0) and its corresponding r⃗(0).

8: else

9: Compute d⃗(t) from d⃗(t−1).

10: Compute ⃗rPPR
(t) from ⃗rPPR

(t−1).

11: Apply Algorithm 2 to ⃗rPPR
(t) and d⃗(t).

12: end if

13: Compute r⃗X(x, i) =
r⃗PPR(x,i)∑

x∈Xk
r⃗PPR(x,i)

for all x ∈ Xi.

14: Compute r⃗Y (y, i) =
r⃗PPR(y,i)∑

y∈Y r⃗PPR(y,i)
for all y ∈ Y .

15: end for

// Step 2: Get new attribute

16: for i = 1 to K do

17: for each xj ∈ Xi do

18: Estimate πj,i by Definition 2.

19: end for

20: Determine a centroid vector s⃗Xi
.

21: end for

// Step 3: Assign xj to cluster

22: for each xj ∈ X do

23: for i = 1 to K do

24: Compute a distance D(j, k).

25: end for

26: Obtain k0 = arg min
k

D(j, k).

27: X
(t+1)
k0

= X
(t+1)
k0

∪ {xj}.
28: end for

29: t = t + 1.

30: until No clusters are updated.

where r⃗PPR is the “exact” rank scores. The pseudo-code of

this algorithm is shown in Algorithm 2.

3.3 Proposed Algorithm

As shown in Algorithm 3, our proposed algorithm replaces

the exhaustive ranking procedure in Algorithm 1 with the dy-

namic rank score tracking method (lines 4-15). In step 1, if t

is 0, r⃗PPR(v, i) is initialized for all nodes by the Personalized

PageRank algorithm for each subgraph. Otherwise, our algo-

rithm updates r⃗PPR(v, i) by Algorithm 2 to the rank scores,

which avoids computing all nodes in each subgraph. After

converging Algorithm 2, our method converts the rank scores

into r⃗X and r⃗Y . Next, our proposed algorithm moves to the

clustering procedure (lines 16-28 in Algorithm 3). Here, the

detail of the clustering procedure are omitted because same

as those of RankClus shown in Algorithm 1.

3.4 Parallelization

For further improving the computational efficiency of Algo-

rithm 3, we extend our algorithm to utilize multi-threading

techniques on a manycore CPU. We employ thread-based

parallelizations into loop-blocks that compute ranks of nodes.

As shown as in the previous section, our proposed method

performs the computation of rank scores for each clusters,

i.e., Xt
1, X

t
2, . . . , X

t
K . Since the computation of rank scores

are independent for each cluster, we can output the same

results as those of Algorithm 3 even if we parallelize Step

1 in Algorithm 3 . Thus, we apply task-wise parallelization

for the steps to reduce the computation time of Algorithm3.

Algorithm 4 shows the pseudocode of our multi-threading

(parallel) algorithm, which is an extension of Algorithm 3.

As we can see Algorithm 4, the workflow is the same as that

of Algorithm 3. Specifically, (line 4) in Algorithm 4 , we

assign the ranking computation to a single thread.

4 Experimental Analysis
We experimentally analyzed the effectiveness of our pro-

posed algorithm to reduce the computation time of RankClus

while keeping the clustering accuracy of real-world bi-type

information networks.

4.1 Setup

Algorithms: We compared the effectiveness of three meth-

ods:

• Proposal: Our proposed algorithm(Algorithm 3)

that employs dynamic the rank score tracking method.

Unless otherwise stated, ϵ = 10−9 is the default setting

of the Gauss-Southwell algorithm [1], [2], [7].Unless otherwise

stated, we used a single threaded algorithm.

• RankClus: The original algorithm(Algorithm 1)

used to extract clusters from bi-type information net-

works [15].

• Pruning: The state-of-the-art method that reduces

the computation time of RankClus by employing threshold-

based pruning [17], [18]. Here the node-pruning parameters

are set to the default settings shown in the literature [17].

We implemented the above three algorithms using C++11

and compiled them with gcc 8.2.0 with -O2 option. All ex-

periments were conducted on a Linux server with a CPU

(Intel Xeon E5-1620 3.50 GHz) and 128 GB main memory.

All algorithms used α = 0.85 for the PPR parameter in the

ranking procedure.
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Figure 6 Running times by varying ϵ on Yahoo-msg.

Real-world datasets: We used two real-world bi-type in-

formation networks published in public data repositories.

• DBLP [17]: A bibliographic graph extracted from

DBLP, which represents the relationships among 20 represen-

tative computer science conferences and 5,639 authors who

have published more than two conference papers. This graph

handles two types of relationships as edges: conference-

author relationships and co-author relationships; In total,

there are 95,516 edges in this dataset. We set the conferences

and authors as the target type and attribute type, respec-

tively.

• Yahoo-msg [8]: A social graph extracted from Ya-

hoo Messenger in which users communicate with other users.

This graph is composed of 100,001 users and 57 locations that

are associated with the users. We set the locations and users

are the target types and attribute types, respectively. This

graph handles user-user relationships and user-location rela-

tionships. Once a user communicates with other users, they

are linked the users by bi-directional edges. Additionally,

users are linked with their representative locations based on

their zip codes. As a result, this dataset has 6,359,436 edges.

Evaluation metric: We compared the clustering accuracy

using an information-theoric metric, called normalized mu-

tual information (NMI) [14]. Once two clustering results are

obtained, NMI returns a score between 0 and 1. A score of

1 indicates the clusters are the same, while score of 0 means

they are completely different.

4.2 Running Time Analysis

We evaluated the efficiency of our proposed algorithm by

comparing running times of the above real-world bi-type in-

formation networks. In the evaluation, the number of clus-

ters K was set to as K = 4 and K = 10 for DBLP and

Yahoo-msg, respectively.

Figures 4 and 3 shows the running time of each algorithm

on each dataset. For Proposal, ϵ = 10−9. Our proposed al-

gorithm outperforms the other algorithms examined. Specif-

ically, Proposal is up to twice as fast as the other algorithms,

suggesting that our dynamic rank score tracking method mit-

igates the exhaustive computations incurred by the original

RankClus framework. By contrast, the state-of-the-art al-

gorithm (Pruning) increases the running times compared to

RankClus. Because the real-world datasets shown in Sec-

tion 4.1 have sparse connections even though Pruning typi-

cally fails to prune nodes on sparse graphs [17]. Hence, Pro-

posal is superior to the state-of-the-art algorithm for real-

world bi-type information networks. Hereafter, we omit the

results of Pruning since it does not reduce the running times

for sparse datasets (Figures. 4 and 3)

Next, we assessed the effect of the user-specified parame-

ter ϵ of Proposal. We compared running times of Proposal

by varying ϵ with those of RankClus. Figures 5 and 6 show

the running times of DBLP and Yahoo-msg, respectively.

We varied ϵ from 10−9 to 10−2. Our proposed algorithm

gradually reduces the running times as the ϵ value increases

because our dynamic rank score tracking method only needs

to update r⃗
(t)
PPR and d⃗(t) until the largest residual satisfies

d⃗
(t)
i < ϵ. Thus, Proposal terminates earlier for larger ϵ val-

ues.

We finally evaluated the impact of the number of clusters

K on the running times. Figure 7 shows the runtimes when

K was varied for the Yahoo-msg dataset. As K in Proposal

increases, the speeding-up ratio increases because each sub-
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Figure 7 Running times

by varying K for Yahoo-msg.
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by varying T on DBLP.
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by varying T on Yahoo-msg.

Algorithm 4 Parallel proposed algorithm

Input: G = ⟨V,E⟩, K, and ϵ

Output: Xi (i = 1, 2, · · · , K)

// Step 0: Initialization

1: t = 0.

2: Generate initial K clusters X
(0)
1 , X

(0)
2 , . . . , X

(0)
K .

3: repeat

// Step 1: Dynamic Rank Score Tracking

4: for i = 1 to K do in thread-parallel do

5: if t == 0 then

6: Compute r⃗PPR(v, i) for all v ∈ Xi ∪ Y .

7: Compute residual d⃗(0) and its corresponding r⃗(0).

8: else

9: Compute d⃗(t) from d⃗(t−1).

10: Compute ⃗rPPR
(t) from ⃗rPPR

(t−1).

11: Apply Algorithm 2 to ⃗rPPR
(t) and d⃗(t).

12: end if

13: Compute r⃗X(x, i) =
r⃗PPR(x,i)∑

x∈Xk
r⃗PPR(x,i)

for all x ∈ Xi.

14: Compute r⃗Y (y, i) =
r⃗PPR(y,i)∑

y∈Y r⃗PPR(y,i)
for all y ∈ Y .

15: end for

// Step 2: Get new attribute

16: for i = 1 to K do

17: for each xj ∈ Xi do

18: Estimate πj,i by Definition 2.

19: end for

20: Determine a centroid vector s⃗Xi
.

21: end for

// Step 3: Assign xj to cluster

22: for each xj ∈ X do

23: for i = 1 to K do

24: Compute a distance D(j, k).

25: end for

26: Obtain k0 = arg min
k

D(j, k).

27: X
(t+1)
k0

= X
(t+1)
k0

∪ {xj}.
28: end for

29: t = t + 1.

30: until No clusters are updated.

graph Gi does not drastically change its cluster members

even if the K is large. In particular, if a subgraph Gi does

not have updates, our proposed algorithm can skip the rank-

ing procedure for the subgraph, whereas the other algorithm

must perform PPR on all subgraphs. Consequently, the effi-

ciency can be improved for larger K settings.

4.2. 1 Effectiveness of our multi-threading approach

We here experimentally discuss the effectiveness of the par-

allelization techniques shown in Algorithm 4. In this evalu-

ation, we compared the running time of RankClus with that

of our parallel algorithm by varying the number of threads

invoked in our proposed algorithm. Figures 8 and 9 show

the running times of DBLP and Yahoo-msg, respectively.

We varied the number of threads T from 1 to 4 for test-

ing the effectiveness of thread-based parallelization. Note

that the parallel algorithm is equivalent to Algorithm 3 if

we set T = 1. As we can see in Figures 8 and 9, our pro-

posed method shows faster clustering time compared with

RankClus. Furthermore, we can observe from the figure that

our parallel algorithm successfully reduces the running time

by increasing the number of threads. Specifically, when we

set T = 4, our proposed method on Yahoo-msg dataset is al-

most 3.5 times faster than the original RankClus algorithm.

These results indicate that our parallelization approach is

effective in reducing the running time of RankClus.

4.3 Accuracy of Clustering Results

We assessed the accuracy of the clustering results produced

by the proposed algorithm. In this evaluation, we measured

the NMI scores between clusters extracted by Proposal and

RankClus. Herein we varied the ϵ values of Proposal from

10−9 to 10−2.

Figure 10 shows NMI scores of Proposal. Our proposed

method shows high NMI values for all ϵ settings. As men-

tioned in Section 4.2. 1, our parallel algorithm outputs the

same NMI results as our non-parallel algorithm. In particu-

lar, our algorithm always shows NMI scores higher than 0.9,

even though it has drastically reduced running times com-

pared to RankClus. These results experimentally confirm

the effectiveness of our proposed approaches on real-world

bi-type information networks.

5 CONCLUSION

In this paper, we proposed two algorithms to improve the

efficiency of RankClus algorithm for large-scale bi-type in-

formation networks. The first one is the dynamic rank score
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Figure 10 NMI score of Proposal by varying ϵ. Although

Proposal effectively reduces the running time (Sec-

tion 4.2), it keeps significantly high NMI scores (>= 0.9)

for all ϵ settings.

tracing algorithm that only computes the evolved nodes and

their neighbor nodes so as to reduce their approximation er-

rors in each iteration. In order to find evolved nodes, we fo-

cus on the dynamic graph property of RankClus framework,

and adopt a dynamic Personalized PageRank computation

based on the gauss-Southwell method. The second one is a

multi-threading method that is an extension of our dynaimc

rank score tracking algorithm. In the dynamic rank score

tracking algorithm, we need perform the computations for

all subgraph iteratively. To overcome the performance limi-

tation, we employed a task-wise parallelizaiton to speed up

the dynamic rank score tracking in our parallel algorithm.

Our extensive experiments using real-world datasets demon-

strate our proposed method provides clusters almost twice as

fast as competitive algorithms while keeping the clustering

accuracy of the original RankClus algorithm. Furthermore,

we experimentally confirmed that our parallel algorithm suc-

cessfully reduces the running time of the rank score tracking

method by increasing the number of thread invoked in the al-

gorithm. The RankClus framework plays an important role

in current and prospective Web-based system and applica-

tions in various disciplines. Our efficient algorithms will help

to improve the effectiveness of future applications.
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