

DEIM2020 D8-3 (day2 p40)

An Acceleration of Inclusion Dependency Discovery and its Evaluation

Hiroaki UNO† Kazuhiro SAITO†‡ and Hideyuki KAWASHIMA†

†Keio University 5322 Endo, Fujisawa-shi, Kanagawa, 252-0882 Japan

‡KDDI Research, Inc. Garden Air Tower, 3-10-10, Iidabashi, Chiyoda-ku, Tokyo, 102-8460 Japan

E-mail: †hiroaki.uno@keio.jp, river@sfc.keio.ac.jp †‡ku-saitou@kddi-research.jp

Abstract In recent years, the variety of data is increasing, making data management tasks more and more complex. Data

profiling is a process of determining metadata by extracting definitions of data from data itself. Inclusion dependency detection

is one of the data profiling tasks which detects inclusion of data between columns, and is applied for discovery of relationship

between data, and data integration. In this research, we propose an accelerated algorithm of accurate IND discovery, focusing on

the two major components: candidate generation and IND discovery. The result showed that our proposals are effective when

processing relations above a certain scale.

Keyword Data Profiling, Metadata, Inclusion Dependency, Data Structure

1. Introduction

In recent years, the variety of data is dramatically

increasing. IoT devices and digital transformation have

made it possible to generate various data by translating real

world information into the data. In addition, open data and

data trading are enabling us to utilize various external data

that people except data owner could not touch before. We

can now have an opportunity to utilize data for various

purposes, such as high-quality data analysis and machine

learning, by increasing a variety of such data.

However, more variation of data leads to more complex

data management. One of the data management tasks in the

environment where a wide variety of data is stored is data

exploration that a user looks for data to utilize. Another

example of the tasks is to find relationship between tables

which can be joined and utilized together. More variety of

data there are in the environment, more time is wasted for

the tasks related to data management. In this s ituation, it is

very important to create and collect information about data

itself, called metadata, so that data can be managed more

easily.

Data profiling[1] is a process of determining metadata

by extracting data definitions from data itself, and it

simplifies data management tasks. Data profiling can be

classified into three tasks: Profiling for a “single column”,

“multiple columns”, and “dependencies”. Inclusion

dependency (IND) discovery is one of the important

profiling tasks which find dependencies between columns

including dependencies across relations. An IND states that

all tuples of some columns in a relation are included in

some other columns in the same or a different relation[2].

The IND discovery is applied for foreign key discovery.

Furthermore, it can be ranked as a prerequisite for data

integration.

The objective of our research is to accelerate discovery

of inclusion dependencies. In this research, we focus on

exact discovery algorithms. Exact algorithms aim to

guarantee the completeness of the result; in IND discovery

context, the exact algorithms try to find every INDs and

only INDs. In contrast, approximate algorithms pursue

time-efficiency while the completeness and accuracy of the

result are not always guaranteed; approximate discovery

algorithms can return results with not-INDs (false

positives) or results missing some INDs (false negatives).

Without any acceleration method, the complexity of exact

discovery of IND grows hyper exponentially with arity. We

propose a time-efficient algorithm, both referring to

existing IND discovery algorithms and introducing other

improvements.

The remainder of this paper is organized as follows: In

chapter 2, the general flow of the multiple column IND

discovery is explained. Chapter 3 explains our proposals to

two major components of IND discovery algorithm. In

chapter 4 we explain the method of evaluation and show

results. In chapter 5 we discuss the results and further

improvements. After mentioning the existing algorithm in

chapter 6, we conclude in chapter 7.

2. Overview of IND discovery

We explain the overview of IND discovery in this chapter.

In a relation R, let |𝑅| the number of columns, and |𝑟| the

number of tuples. Here, a column combination is defined

as one or more columns selected from all columns

𝑟1, 𝑟2, … 𝑟|𝑅| in R. A column combination a in R is expressed

𝑅[𝑎]. Given two relations R and S, if values in any tuple of

column combination 𝑅[𝑎] are a subset of values of column

combination 𝑆[𝑏], there exists an inclusion dependency of

𝑅[𝑎] on 𝑆[𝑏] . The dependency is written as 𝑅[𝑎] ⊆ 𝑆[𝑏] .

Furthermore, the left-hand side 𝑅[𝑎] is called the

dependent column combination and right -hand side 𝑆[𝑏]

the referenced column combination. We say that both sides

together comprise “a pair of column combination”.

The common flow of multiple column IND discovery can

be described as the following. (Also shown in エラー ! 参

照元が見つかりません。 .) We can see that in each arity,

the algorithm is comprised of two kinds of process,

candidate generation and IND checking.

Algorithm 1: Multiple column IND discovery

Input: R, S: relations

Output: INDlist: List of INDs from every arity

1 INDlist = null;

2 arityUpperlimit = 𝑚𝑖𝑛{|R|, |S|};

3 for arity = 1 to arityUpperlimit

4 │ candidateList =genCandidates(arity, R, S);

5 │ for each candidate from candidateList

6 │ │ isIND = checkIND(arity, candidate, R, S);

7 │ │ if isIND is TRUE

8 │ ││ add candidate to INDlist

9 │ │└

10 │ └

11 └

12 return INDlist

Figure 1

Flow of multiple column IND discovery

3. Proposal

In this chapter, we state possible acceleration methods

to two major components of IND discovery: candidate

generation and IND checking.

3.1. Candidate generation algorithm

Candidate generation in n-ary IND discovery includes

selecting 𝑛 columns each from relation R and S,

generating pairs of column combination which has a

possibility to be dependent and referenced ones in

inclusion dependency.

3.1.1. Naïve method

The naïve method generates IND candidates

independently for each arity. The procedure in 𝑛-ary is as

follows.

(1) Generate 𝑛 -ary combinations without replacement

from columns in R, making dependent sides of IND.

(2) Generate 𝑛 -ary combinations without replacement

from columns in S, making referenced sides of IND.

(3) Get pairs of column combinations by generating the

Cartesian product of dependent and referenced sides.

The reason for applying different ways of generating

column combination (combination for R, and permutation

for S) is to generate IND candidates in exact quantity.

If permutation is applied both for R and S, for example,

duplicate candidates will be generated with substantially

identical meaning. For example, 𝑅[𝐴, 𝐵] ⊆ 𝑆[𝐴, 𝐵] and

𝑅[𝐵, 𝐴] ⊆ 𝑆[𝐵, 𝐴] have different expressions but are

identical as IND candidates.

Figure 2 n-ary naïve candidate generation

Example shown in 2-ary. The dotted rectangle shows 2-

ary candidates which cannot be INDs.

The complexity of naïve candidate generation can be

estimated as follows.

(𝑪|𝑹| 𝒏 × 𝒏!) × (𝑷|𝑺| 𝒏 × 𝒏!) when 𝒏 ≤ 𝒎𝒊𝒏{|𝐑|, |𝐒|}

This naïve method does not require incremental search

from unary. It means that this method does not reflect the

result of actual INDs of lower arities. This leads to a

possibility of generating false positive candidates which

are not actually INDs. For example, even when 𝑅[𝑐] ⊆ 𝑆[𝑏]

is not true in unary, the method generates candidates such

as 𝑅[𝑎, 𝑐] ⊆ 𝑆[𝑎, 𝑏] in 2-ary.

3.1.2. Fast Incremental method

We propose an incremental version of candidate

generation, the Fast Incremental method. Its procedure is

as follows.

In case of 1-ary, the algorithm utilizes the naïve method.

Note that in unary generating permutations and

combination is equal

(1) Generate dependent sides by selecting one column

each from R.

(2) Generate referenced sides by selecting one column

each from S.

(3) Get IND candidates by generating Cartesian product

of both sides.

Figure 3 n-ary candidate generation

based on (n-1)-ary and 1-ary IND

Example shown in 2-ary.

In case of 2-ary or more, the algorithm employs the result

of IND checking of lower arities.

(1) Generate n-ary candidates by combining (𝑛 − 1)-ary

and unary INDs. Combine dependent side (left -hand

side, R) of unary to that of (𝑛 − 1)-ary, and referenced

side (right-hand side, S) respectively. (Shown in エ

ラー ! 参照元が見つかりません。 .)

(2) The combined result is only employed only if the

following two conditions are fulfilled:

i. For dependent side, the column from unary IND is

rightmost in original R compared to columns from

(𝑛 − 1)-ary IND.

ii. For referenced side, each column should be unique.

Through this algorithm, candidates which cannot be IND

are pruned and this contributes to reduction of the

calculation cost in IND checking phase.

3.2. IND checking algorithm

IND checking is a process of determining whether each

generated candidate is actually IND (whether the

dependent column combination is included in referenced

one) by scanning tuples.

In IND checking, we define complexity as the frequency

of checking cell to cell in relation.

3.2.1. Naïve method

The naïve IND checking algorithm employs the method

similar to nested loop join. The algorithm checks all the

tuples in referenced side for each tuple in dependent side.

The complexity, the frequency of checking cell to cell,

is |𝑟| × |𝑠| × 𝑛.

3.2.2. Hashing with PLI

We incorporate a technique of acceleration by hashing

the referenced side relation. This corresponds to the one-

way hash join.

Figure 4 Hash table incorporating PLI

The values X and Y are stored in different hash tables. Both

X in h(S[a]) and Y in h(S[b]) has same 3 in their position

lists, thus IND checking program can judge that X and Y

are in the same tuple in original relation S.

In our method, hash tables are generated independently

from each column just after loading the relation so that the

algorithm does not have to regenerate hash tables for each

arity. At this moment, |𝑆| distinct hash tables are

generated. Each node in a hash table has a Position List

Index (PLI)[3] data structure, and can contain not only the

value of the column, but also the tuple number(s) where the

value is from. (Shown in エラー ! 参照元が見つかりま

せん。 .)

Storing tuple numbers is to check whether values hashed

in different hash tables are contained in the same tuple or

not in the original referenced relation, when checking INDs

of 2-ary or more.

When checking n-ary INDs, the procedure retrieves the

cell value of R from hash table of corresponding column of

S. Since column combination has n columns, the procedure

is repeated n times for each tuple in R. Thus, the

complexity is reduced to |𝑟| × 𝑛.

4. Evaluation

In this chapter, we compare and evaluate the

performances of IND discovery algorithms.

4.1. Environment

We explain briefly about implementation , followed by

the methods and conditions of evaluation.

4.1.1. Implementation

We implemented the IND discovery algorithms in C

language. The program accepts two CSV files. Each CSV

file represents a single relation. The program checks if

there are any INDs from the first relation to second relation.

The first CSV file is a potentially dependent relation and

second a potentially referenced relation.

4.1.2. Methods of evaluation

We conduct two types of experiments; we compare and

evaluate the IND program from two different ways.

In the first experiment, we check how the execution time

grows as the arity grows. This is to see the effect of

different candidate generation methods.

Another experiment checks how the execution time

grows as records in a relation increase in number. This is

to see the difference between IND checking algorithms.

4.1.3. Details of the experiments

We prepared CSV files which contain pseudo-random

integer values for the experiments .

In the test procedure, we designate the same CSV file for

dependent and referenced relation as input for the program.

This is because our test aims to measure the performance

of IND programs. Since all the methods we introduced in

this paper are accurate algorithms, we do not evaluate the

accuracies of each method.

We execute the same-setting trial for five times, and

measure execution time each, and calculate the average of

execution time.

4.1.4. Conditions of the experiments

We conducted experiments under the following

conditions.

Hardware

・ CPU: Intel Core i5-7200U 2.50GHz 2.71GHz

・ RAM: 8.00GB

・ ROM: 256GB

Software

・ OS: Windows 10 64bit

・ C Compiler: realgcc.exe (Rev1, Built by MSYS2

project) 7.2.0

・ Shell: GNU bash, version 4.4.19(2)-release (x86_64-

pc-msys)

4.2. Result

The results of the experiments were as follows.

4.2.1. Comparison of candidate generation methods

We first show comparison of different candidate

generation methods: the naïve method, and Fast

Incremental method which we propose.

In this experiment conditions related to IND checking

were set fixed as follows: The number of records in each

relation was fixed constant to 100 records. Furthermore,

naïve IND checking method was employed throughout this

experiment.

Limit of arity
Naïve

(average)

Proposal

(average)

1 31.6 34.4

2 41 36.2

3 27 37.4

4 33.2 39.8

5 33.6 40.6

6 48.8 46.6

7 128.8 36.2

8 - 39

9 - 47.8

10 - 76.8

Table 1 Execution time (ms) of programs

with different candidate generation methods

The blank (-) shows the result is unavailable.

Figure 5

Comparison of averages of execution time

with different candidate generation methods

4.2.2. Comparison of IND checking methods

We also compared different IND checking methods : the

naïve method, and hashing with PLI.

While the number of records in the input fil es changes

in this experiment, the conditions related to candidate

generation were set fixed as follows: We designated

relations with 6 columns as input, thus the limit of arity in

the experiment is constantly 6-ary. Furthermore, the Fast

Incremental method was employed throughout this

experiment.

Number

of

records

Naïve

(average)

Hashing

with PLI

(average)

1 59.2 118.8

5 61.6 63

10 48.2 60.2

50 72.4 56

100 71.2 69.8

500 105 88.8

1,000 208.2 108

5,000 3,155.8 1,252.8

10,000 16,299.4 7,564

Table 2 Execution time (ms) of programs

with different IND checking methods

Figure 6

Comparison of averages of execution time

with different IND checking methods

5. Discussion

In this chapter we discuss the result of the experiments

and possible further improvements.

5.1. Interpretation of the evaluation

The results show that our proposals effectively reduce

execution time in case arity or record size is above the

certain level.

In the phase of candidate generation, our Fast

Incremental method effectively reduce the execution time

in 7-ary or more.

The result also shows the stability of our method. In 8-

ary or more, naïve method could not complete the process.

On the other hand, our method works properly at least in

10-ary or below.

It suggests that the Fast Incremental method effectively

prunes the candidates, mitigating the exponential growth

of candidates, leading to the fast and stable execution.

In the phase of IND checking, hashing with PLI

effectively reduce the execution time when the number of

records in a relation is more than 1 ,000.

Although the proposal method needs to prepare hash

tables as an initial investment, the effect of hashing is

expected to expand in actual environment as the number of

records grow.

5.2. Future work

We raise following topics for further improvements in

IND discovery.

First, incorporating other data profiling techniques will

lead to more efficient candidate generation. Metadata of

each column such as domain or column name is helpful in

deciding whether column combinations from R and S

should be paired. Applying these data profiling techniques

before candidate generation is an option to be considered.

Second, we expect that parallel execution in the phase of

IND checking would be effective. Whether a certain tuple

in R matches a tuple in S does not affect the result of

another tuple in R. This means that each tuple in R can be

independently checked and parallel execution can be

applied.

6. Related Work

Finally, we mention existing research which addresses

IND discovery algorithms.

FAIDA[4] is an IND discovery algorithm published in

2017. It employs an overall framework in which IND

candidates are generated based on actual INDs of lower

arities.

FAIDA is characterized by combination of exact and

approximate methods.

In the phase of candidate generation, exact methods are

employed in a-priori style. In the phase of IND checking,

FAIDA uses several approximate approaches : Values in a

column are processed either in probabilistic cardinality

estimation or in a sampling-based method, according to the

number of distinct values in the column.

The result of IND discovery by FAIDA may include not -

INDs, but does not miss any IND; it may produce false

positive but no false negative.

We referenced this overall framework of FAIDA in

designing algorithms. Since our objective is designing

accurate algorithms, we did not compare the performance

with FAIDA.

7. Conclusion

In this paper we designed and implemented exact IND

discovery algorithm applying acceleration methods;

candidate generation which combines (𝑛 − 1) -ary and 1-

ary INDs, and IND checking with generating hash table

with Position List Index.

We theoretically compared complexities of naïve

methods and the method we propose. We also tested the

performance in actual environment, and the result showed

that our proposals are effective when processing relations

above a certain scale.

We expect that further acceleration would be realized by

incorporating other data profiling techniques, and also by

applying parallel execution.

Acknowledgements

This work is partially supported by JST CREST Grant

Numbers JPMJCR1414, JSPS KAKENHI Grant Number

17H01748, 19H04117 and project commissioned by the

New Energy and Industrial Technology Development

Organization (NEDO).

References
[1] Abedjan, Z., Golab, L. and Naumann, F. : Profiling

Relational Data: A Survey, The VLDB Journal , Vol.
24, No. 4, pp. 557-581 (2015).

[2] De Marchi, F., Lopes, S., and Petit, J. M.: Unary and
n-ary inclusion dependency discovery in relational
databases, J. Intelligent Information Systems , Vol.
32, No. 1, pp. 53-73, (2009).

[3] Heise, A., Quiané-Ruiz J., Abedjan, Z., Jentzsch, A.,
and Naumann, F.: Scalable Discovery of Unique
Column Combinations, Proceedings of the VLDB
Endowment (PVLDB) , Vol. 7, No. 4, pp. 301-312
(2013).

[4] Kruse, S., Papenbrock, T., Dullweber, C., Finke, M.,
Hegner, M., Zabel, M., Zöllner, C. and Naumann, F.:
Fast Approximate Discovery of Inclusion
Dependencies, Datenbanksysteme für Business,
Technologie und Web (BTW 2017), pp. 207-226
(2017).

[5] Papenbrock, T., Bergmann, T., Finke, M., Zwiener,
J., and Naumann, F.: Data profiling with metanome.
Proceedings of the VLDB Endowment (PVLDB) , Vol.
8, No. 12, pp. 1860–1863. (2015)
DOI:https://doi.org/10.14778/2824032.2824086

	An Acceleration of Inclusion Dependency Discovery and its Evaluation
	Hiroaki UNO† Kazuhiro SAITO†‡ and Hideyuki KAWASHIMA†
	†Keio University 5322 Endo, Fujisawa-shi, Kanagawa, 252-0882 Japan ‡KDDI Research, Inc. Garden Air Tower, 3-10-10, Iidabashi, Chiyoda-ku, Tokyo, 102-8460 Japan
	E-mail: †hiroaki.uno@keio.jp, river@sfc.keio.ac.jp †‡ku-saitou@kddi-research.jp
	1. Introduction
	2. Overview of IND discovery
	3. Proposal
	3.1. Candidate generation algorithm
	3.1.1. Naïve method
	3.1.2. Fast Incremental method

	3.2. IND checking algorithm
	3.2.1. Naïve method
	3.2.2. Hashing with PLI

	4. Evaluation
	4.1. Environment
	4.1.1. Implementation
	4.1.2. Methods of evaluation
	4.1.3. Details of the experiments
	4.1.4. Conditions of the experiments

	4.2. Result
	4.2.1. Comparison of candidate generation methods
	4.2.2. Comparison of IND checking methods

	5. Discussion
	5.1. Interpretation of the evaluation
	5.2. Future work

	6. Related Work
	7. Conclusion

