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Abstract  In recent years, the variety of data is increasing, making data management tasks more and more complex. Data 

profiling is a process of determining metadata by extracting definitions of data from data itself. Inclusion dependency detection 

is one of the data profiling tasks which detects inclusion of data between columns, and is applied for discovery of relationship 

between data, and data integration. In this research, we propose an accelerated algorithm of accurate IND discovery, focusing on 

the two major components: candidate generation and IND discovery. The result showed that our proposals are effective when 

processing relations above a certain scale. 
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1. Introduction 

In recent years, the variety of data is dramatically 

increasing. IoT devices and digital transformation have 

made it possible to generate various data by translating real 

world information into the data. In addition, open data and 

data trading are enabling us to utilize various external data 

that people except data owner could not touch before. We 

can now have an opportunity to utilize data for various 

purposes, such as high-quality data analysis and machine 

learning, by increasing a variety of such data.  

However, more variation of data leads to more complex 

data management. One of the data management tasks in the 

environment where a wide variety of data is stored is data 

exploration that a user looks for data to utilize. Another 

example of the tasks is to find relationship between tables 

which can be joined and utilized together. More variety of 

data there are in the environment, more time is wasted for 

the tasks related to data management. In this s ituation, it is 

very important to create and collect information about data 

itself, called metadata, so that data can be managed more 

easily. 

Data profiling[1] is a process of determining metadata 

by extracting data definitions from data itself, and it 

simplifies data management tasks.  Data profiling can be 

classified into three tasks: Profiling for a “single column”, 

“multiple columns”, and “dependencies”. Inclusion 

dependency (IND) discovery is one of the important 

profiling tasks which find dependencies between columns 

including dependencies across relations. An IND states that 

all tuples of some columns in a relation are included in 

some other columns in the same or a different relation[2]. 

The IND discovery is applied for foreign key discovery. 

Furthermore, it can be ranked as a prerequisite for data 

integration. 

The objective of our research is to accelerate discovery 

of inclusion dependencies. In this research, we focus on 

exact discovery algorithms. Exact algorithms aim to 

guarantee the completeness of the result; in IND discovery 

context, the exact algorithms try to find every  INDs and 

only INDs. In contrast, approximate algorithms pursue 

time-efficiency while the completeness and accuracy of the 

result are not always guaranteed; approximate discovery 

algorithms can return results with not-INDs (false 

positives) or results missing some INDs (false negatives). 

Without any acceleration method, the complexity of exact 

discovery of IND grows hyper exponentially with arity. We 

propose a time-efficient algorithm, both referring to 

existing IND discovery algorithms and introducing other 

improvements. 

The remainder of this paper is organized as follows: In 

chapter 2, the general flow of the multiple column IND 

discovery is explained. Chapter 3 explains our proposals to 

two major components of IND discovery algorithm. In 

chapter 4 we explain the method of evaluation and show 

results. In chapter 5 we discuss the results and further 

improvements. After mentioning the existing algorithm in 

chapter 6, we conclude in chapter 7. 

 

2. Overview of IND discovery 

We explain the overview of IND discovery in this chapter. 

In a relation R, let |𝑅| the number of columns, and |𝑟| the 

number of tuples. Here, a column combination is defined 

as one or more columns selected from all columns 

𝑟1, 𝑟2, … 𝑟|𝑅| in R. A column combination a in R is expressed 



 

 

𝑅[𝑎]. Given two relations R and S, if values in any tuple of 

column combination 𝑅[𝑎] are a subset of values of column 

combination 𝑆[𝑏], there exists an inclusion dependency of 

𝑅[𝑎]  on 𝑆[𝑏] . The dependency is written as 𝑅[𝑎] ⊆ 𝑆[𝑏] . 

Furthermore, the left-hand side 𝑅[𝑎]  is called the 

dependent column combination and right -hand side 𝑆[𝑏] 

the referenced column combination. We say that both sides 

together comprise “a pair of column combination”. 

 

The common flow of multiple column IND discovery can 

be described as the following. (Also shown in エラー ! 参

照元が見つかりません。 .) We can see that in each arity, 

the algorithm is comprised of two kinds of process, 

candidate generation and IND checking.  

 

Algorithm 1:  Multiple column IND discovery 

Input: R, S: relations 

Output: INDlist: List of INDs from every arity 

1 INDlist = null; 

2 arityUpperlimit  = 𝑚𝑖𝑛{|R|, |S|}; 

3 for arity = 1 to arityUpperlimit  

4 │ candidateList =genCandidates(arity, R, S); 

5 │ for each candidate from candidateList 

6 │ │ isIND = checkIND(arity, candidate, R, S); 

7 │ │ if isIND is TRUE 

8 │ ││ add candidate to INDlist  

9 │ │└ 

10 │ └ 

11 └ 

12 return INDlist 

 

 

Figure 1 

Flow of multiple column IND discovery 

 

3. Proposal 

In this chapter, we state possible acceleration methods 

to two major components of IND discovery: candidate 

generation and IND checking.  

 

3.1. Candidate generation algorithm 

Candidate generation in n-ary IND discovery includes 

selecting 𝑛  columns each from relation R and S, 

generating pairs of column combination which has a 

possibility to be dependent and referenced ones in 

inclusion dependency. 

 

3.1.1. Naïve method 

The naïve method generates IND candidates 

independently for each arity. The procedure in 𝑛-ary is as 

follows. 

 

(1) Generate 𝑛 -ary combinations without replacement  

from columns in R, making dependent sides of IND.  

(2) Generate 𝑛 -ary combinations without replacement 

from columns in S, making referenced sides of IND.  

(3) Get pairs of column combinations by generating the 

Cartesian product of dependent and referenced sides.  

 

The reason for applying different ways of generating 

column combination (combination for R, and permutation 

for S) is to generate IND candidates in exact quantity.  

If permutation is applied both for R and S,  for example, 

duplicate candidates will be generated with substantially 

identical meaning. For example, 𝑅[𝐴, 𝐵] ⊆ 𝑆[𝐴, 𝐵]  and 

𝑅[𝐵, 𝐴] ⊆ 𝑆[𝐵, 𝐴]  have different expressions but are 

identical as IND candidates.  

 

 

Figure 2  n-ary naïve candidate generation  

Example shown in 2-ary. The dotted rectangle shows 2-

ary candidates which cannot be INDs. 

 

The complexity of naïve candidate generation can be 

estimated as follows. 



 

 

( 𝑪|𝑹| 𝒏 × 𝒏!) × ( 𝑷|𝑺| 𝒏 × 𝒏!) when 𝒏 ≤ 𝒎𝒊𝒏{|𝐑|, |𝐒|} 

 

This naïve method does not require incremental search 

from unary. It means that this method does not reflect the 

result of actual INDs of lower arities. This leads to a 

possibility of generating false positive candidates which 

are not actually INDs. For example, even when 𝑅[𝑐] ⊆ 𝑆[𝑏] 

is not true in unary, the method generates candidates such 

as 𝑅[𝑎, 𝑐] ⊆ 𝑆[𝑎, 𝑏] in 2-ary. 

 

3.1.2. Fast Incremental method 

We propose an incremental version of candidate 

generation, the Fast Incremental method. Its procedure is 

as follows. 

 

In case of 1-ary, the algorithm utilizes the naïve method. 

Note that in unary generating permutations and 

combination is equal 

(1) Generate dependent sides by selecting one column 

each from R.  

(2) Generate referenced sides by selecting one column 

each from S. 

(3) Get IND candidates by generating Cartesian product 

of both sides. 

 

 

Figure 3  n-ary candidate generation  

based on (n-1)-ary and 1-ary IND 

Example shown in 2-ary. 

 

In case of 2-ary or more, the algorithm employs the result 

of IND checking of lower arities. 

(1) Generate n-ary candidates by combining (𝑛 − 1)-ary 

and unary INDs. Combine dependent side (left -hand 

side, R) of unary to that of (𝑛 − 1)-ary, and referenced 

side (right-hand side, S) respectively.  (Shown in エ

ラー ! 参照元が見つかりません。 .) 

(2) The combined result is only employed only if the 

following two conditions are fulfilled:  

i. For dependent side, the column from unary IND is 

rightmost in original R compared to columns from 

(𝑛 − 1)-ary IND.  

ii. For referenced side, each column should be unique.  

 

Through this algorithm, candidates which cannot be IND 

are pruned and this contributes to reduction of the 

calculation cost in IND checking phase. 

 

3.2. IND checking algorithm 

IND checking is a process of determining whether each 

generated candidate is actually IND (whether the  

dependent column combination is included in referenced 

one) by scanning tuples.  

In IND checking, we define complexity as the frequency 

of checking cell to cell in relation.  

 

3.2.1. Naïve method 

The naïve IND checking algorithm employs the method 

similar to nested loop join.  The algorithm checks all the 

tuples in referenced side for each tuple in dependent side. 

The complexity, the frequency of checking cell to cell, 

is |𝑟| × |𝑠| × 𝑛. 

 

3.2.2. Hashing with PLI 

We incorporate a technique of acceleration by hashing 

the referenced side relation. This corresponds to the one-

way hash join. 

 

 

Figure 4  Hash table incorporating PLI 

The values X and Y are stored in different hash tables. Both 

X in h(S[a]) and Y in h(S[b]) has same 3 in their position 



 

 

lists, thus IND checking program can judge that X and Y 

are in the same tuple in original relation S.  

 

In our method, hash tables are generated independently 

from each column just after loading the relation  so that the 

algorithm does not have to regenerate hash tables for each 

arity. At this moment, |𝑆|  distinct hash tables are 

generated. Each node in a hash table has a Position List 

Index (PLI)[3] data structure, and can contain not only the 

value of the column, but also the tuple number(s) where the 

value is from. (Shown in エラー ! 参照元が見つかりま

せん。 .)  

Storing tuple numbers is to check whether values hashed 

in different hash tables are contained in the same tuple or 

not in the original referenced relation, when checking INDs 

of 2-ary or more. 

When checking n-ary INDs, the procedure retrieves the 

cell value of R from hash table of corresponding column of 

S. Since column combination has n columns, the procedure 

is repeated n times for each tuple in R. Thus, the 

complexity is reduced to |𝑟| × 𝑛. 

 

4. Evaluation 

In this chapter, we compare and evaluate the 

performances of IND discovery algorithms.  

 

4.1. Environment 

We explain briefly about implementation , followed by 

the methods and conditions of evaluation. 

 

4.1.1. Implementation 

We implemented the IND discovery algorithms in C 

language. The program accepts two CSV files. Each CSV 

file represents a single relation. The program checks if 

there are any INDs from the first relation to second relation. 

The first CSV file is a potentially dependent relation and 

second a potentially referenced relation. 

 

4.1.2. Methods of evaluation 

We conduct two types of experiments; we compare and 

evaluate the IND program from two different ways.  

In the first experiment, we check how the execution time 

grows as the arity grows. This is to see the effect of 

different candidate generation methods.  

Another experiment checks how the execution time 

grows as records in a relation increase in number. This is 

to see the difference between IND checking algorithms.  

 

4.1.3. Details of the experiments 

We prepared CSV files which contain pseudo-random 

integer values for the experiments . 

In the test procedure, we designate the same CSV file for 

dependent and referenced relation as input for the program.  

This is because our test aims to measure the performance 

of IND programs. Since all the methods we introduced in 

this paper are accurate algorithms, we do not evaluate the 

accuracies of each method. 

We execute the same-setting trial for five times, and 

measure execution time each, and calculate the average of 

execution time. 

 

4.1.4. Conditions of the experiments 

We conducted experiments under the following 

conditions. 

 

Hardware 

・  CPU: Intel Core i5-7200U 2.50GHz 2.71GHz 

・  RAM: 8.00GB 

・  ROM: 256GB 

 

Software 

・  OS: Windows 10 64bit  

・  C Compiler: realgcc.exe (Rev1, Built by MSYS2 

project) 7.2.0 

・  Shell: GNU bash, version 4.4.19(2)-release (x86_64-

pc-msys) 

 

4.2. Result 

The results of the experiments were as follows. 

 

4.2.1. Comparison of candidate generation methods  

We first show comparison of different candidate 

generation methods: the naïve method, and Fast 

Incremental method which we propose.  

In this experiment conditions related to IND checking  

were set fixed as follows:  The number of records in each 

relation was fixed constant to 100 records. Furthermore, 

naïve IND checking method was employed throughout this 

experiment. 

 

Limit of arity 
Naïve  

(average) 

Proposal  

(average) 

1 31.6 34.4 

2 41 36.2 



 

 

3 27 37.4 

4 33.2 39.8 

5 33.6 40.6 

6 48.8 46.6 

7 128.8 36.2 

8 - 39 

9 - 47.8 

10 - 76.8 

Table 1  Execution time (ms) of programs  

with different candidate generation methods 

The blank (-) shows the result is unavailable. 

 

 

Figure 5   

Comparison of averages of execution time  

with different candidate generation methods 

 

4.2.2. Comparison of IND checking methods  

We also compared different IND checking methods : the 

naïve method, and hashing with PLI.  

While the number of records in the input fil es changes 

in this experiment, the conditions related to candidate 

generation were set fixed as follows: We designated 

relations with 6 columns as input, thus the limit of arity in 

the experiment is constantly 6-ary. Furthermore, the Fast 

Incremental method was employed throughout this 

experiment. 

 

Number 

of 

records 

Naïve 

(average) 

Hashing 

with PLI 

(average) 

1 59.2 118.8 

5 61.6 63 

10 48.2 60.2 

50 72.4 56 

100 71.2 69.8 

500 105 88.8 

1,000 208.2 108 

5,000 3,155.8 1,252.8 

10,000 16,299.4 7,564 

Table 2  Execution time (ms) of programs  

with different IND checking methods 

 

 

Figure 6   

Comparison of averages of execution time  

with different IND checking methods 

 

5. Discussion 

In this chapter we discuss the result of the experiments 

and possible further improvements.  

 

5.1. Interpretation of the evaluation 

The results show that our proposals effectively reduce 

execution time in case arity or record size is above the 

certain level. 

 

In the phase of candidate generation, our Fast 

Incremental method effectively reduce the execution time 

in 7-ary or more.  

The result also shows the stability of our method. In 8-

ary or more, naïve method could not complete the process. 

On the other hand, our method works properly at least in 

10-ary or below.  

It suggests that the Fast Incremental method effectively 

prunes the candidates, mitigating the exponential growth 

of candidates, leading to the fast and stable execution.  

 

In the phase of IND checking, hashing with PLI 

effectively reduce the execution time when the number of 



 

 

records in a relation is more than 1 ,000. 

Although the proposal method needs to prepare hash 

tables as an initial investment, the effect of hashing is 

expected to expand in actual environment as the number of 

records grow. 

 

5.2. Future work 

We raise following topics for further improvements in 

IND discovery. 

First, incorporating other data profiling techniques will 

lead to more efficient candidate generation. Metadata of 

each column such as domain or column name is helpful in 

deciding whether column combinations from R and S 

should be paired. Applying these data profiling techniques 

before candidate generation is an option to be considered.  

Second, we expect that parallel execution in the phase of 

IND checking would be effective. Whether a certain tuple 

in R matches a tuple in S does not affect the result of 

another tuple in R. This means that each tuple in R can be 

independently checked and parallel execution can be 

applied. 

 

6. Related Work 

Finally, we mention existing research which addresses 

IND discovery algorithms.  

 

FAIDA[4] is an IND discovery algorithm published in 

2017. It employs an overall framework in which IND 

candidates are generated based on actual INDs of lower 

arities.  

FAIDA is characterized by combination of exact and 

approximate methods.  

In the phase of candidate generation, exact methods are 

employed in a-priori style. In the phase of IND checking, 

FAIDA uses several approximate approaches : Values in a 

column are processed either in probabilistic cardinality 

estimation or in a sampling-based method, according to the 

number of distinct values in the column.  

The result of IND discovery by FAIDA may include not -

INDs, but does not miss any IND; it may produce false 

positive but no false negative.  

 

We referenced this overall framework of FAIDA in 

designing algorithms. Since our objective is designing 

accurate algorithms, we did not compare the performance 

with FAIDA. 

 

7. Conclusion 

In this paper we designed and implemented exact IND 

discovery algorithm applying acceleration methods; 

candidate generation which combines (𝑛 − 1) -ary and 1-

ary INDs, and IND checking with generating hash table 

with Position List Index.  

We theoretically compared complexities of naïve 

methods and the method we propose. We also tested the 

performance in actual environment, and the result showed 

that our proposals are effective when processing relations 

above a certain scale.  

We expect that further acceleration would be realized by 

incorporating other data profiling techniques, and also by 

applying parallel execution.  
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