

DEIM Forum 2020 F5-1

Contribution of Improved Character Embedding and Latent Posting Styles to

Authorship Attribution of Short Texts

Wenjing HUANG† and Mizuho IWAIHARA‡

Graduate School of Information, Production and Systems, Waseda University

2-7 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka, 808-0135 Japan

E-mail: †huangwj_wendy@akane.waseda.jp, ‡iwaihara@waseda.jp

Abstract Text contents generated by social networking platforms tend to be short. The problem of authorship attribution

on short texts is to determine the author of a given collection of short posts, which is more challenging than that on long texts.

Considering the textual characteristics of sparsity and using informal terms, we propose a method of learning text

representations using a mixture of words and character n-grams, as input to the architecture of several neural networks. We

also focus on the implicit characteristics of posts and incorporate them into the models. Our experimental evaluations on tweets

show a significant improvement over baselines.

Keyword authorship attribution, short texts, social network platforms, character n-grams, CNN, LSTM, latent posting

styles

1. Introduction

As online social activities become active, massive short

texts are generated over social networking platforms.

Classification on short text is a research hotspot following

classification on long texts, but the former is more

challenging than the latter. Author -labeled text

classification, also known as Authorship Attribution (AA),

is a fundamental branch in text classification. The task of

AA is intended to identify the authors of given texts. The

problem of AA on short texts has stimulated growing

interest along with the explosion of social network traffic

[12]. The AA system can be incorporated into application

scenarios of detecting multiple IDs of a unique user,

filtering spams [8] and avoiding identity frauds [12].

The core of solving the AA problem is to capture

writing styles of target authors, which is relatively easy to

achieve for long texts but restricted by sparse f eatures in

short texts. Several classification models implemented on

AA, such as SVM [12], CNN [13] and RNN [2], have

achieved certain success and demonstrated outstanding

performance of word n-grams and character n-grams in

discriminating the writing styles of authors. Schwartz et al.

[12] feed word representations with several character

n-grams and word n-grams into a SVM classifier. Shrestha

et al. [13] employ a sequence of character n -grams as

input to the CNN model. Inspired by the theory of word

and character n-grams, we propose a method of applying

improved character embedding on neural networks, that is,

to embed a sequence of character n -grams mixed with

special words into typical neural networks, such as CNN,

LSTM, etc.

Twitter, as one of the most popular social networking

platforms, provides a vast space for users to share

individual ideas. Twitter stipulated that the length of

tweets was no more than 140 characters by 2017, allowing

users to express the core content in a very short space. We

expect to capture users’ latent posting styles from the

short posts according to the underlying characteristics

exhibited by the posts. Although the restric ted length of

the tweets is short enough, the actual length of the tweets

varies from author to author. Social networking platforms,

including Twitter, provide special functions that users can

mention others (e.g., @Jack) and join topics (e.g.,

#Titanic). Emoticons are also popular among Twitter users.

Additionally, certain users tend to use URLs, numbers,

time and dates more often than others.

Apart from the writing characteristics of the posts, the

sentiment tendency expressed by authors in the posts is a

concern [8]. Most previous work indicates that users are

used to expressing positive, neutral or negative opinions

[6]. For example, “How charming Jack is”, “Jack gave the

chance of survival to Rose” and “I cry for this sad story”

respectively voice the above three categories of sentiment.

Another focus of opinion mining is subjective and

objective expressions in posts. For example, “Jack hits my

heart” and “Jack is dead but love will go on” respectively

represents these two expressions.

In this paper, we introduce an additional feature set

with 10 elements: text length, number of @<username>,

number of #<topic>, number of emoticons, number of

URLs, number of numeric expressions, number of time

expressions, number of date expressions, polarity-level

and subjectivity-level. We also employ neural network

models with tuned hyperparameters on the feature set to

capture their feature expressions. Therefore, one neural

network accepts text sequences as input for capturing

textual features, and another neural network accepts

posting-style sequences for capturing combinations of

latent features. Then we concatenate the two generated

vector representations and feed the combination to the

softmax layer for author identification.

Text classification approaches based on traditional

machine learning are usually calculating TF-IDF scores

and training classification models. So we adopt a method

of calculating TF-IDF scores and training a logistic

regression classifier as one of our baselines in

experiments. In addition, we refer to the main

experimental results in [13] as other baselines. Then we

evaluate the effectiveness of our proposed neural network

models which incorporate improved character embedding

and additional latent posting styles. Moreover, we discuss

the performance of our models in more difficult scenarios,

that is, when the number of authors or the number of posts

per author varies.

The remainder of this paper is organized as follows. The

related work is introduced in Section 2. Section 3

describes our two proposed methods on AA problem,

including improved character embedding and latent

posting styles. Section 4 presents our experimen tal details

and evaluation results. Concluding remarks are discussed

in Section 5.

2. Related Work

The large coverage of social networks has led to

increasing research efforts on content generated by social

media. AA researches have been gradually extended o n

web data such as emails [1], forums [14], and blogs [4].

[3] provides an in-depth analysis of author attribution in

social media. When it comes to shorter texts, the existing

methods for AA are difficult to achieve similar

performance compared to long texts [10]. Word n-grams

and character n-grams are widely used in existing AA

methods [5][8][12][13][15], since they can capture

syntactical features of the texts. For low-dimensional

vector representation of posts, most of previous work is

based on word embedding over certain special word

n-grams and character n-grams [8][12]. Also, [13] is based

on character embedding with character n -grams. There is

no precedent work that is based on character embedding

with mixed words and character n -grams. With the

development of deep learning methods, both CNNs

[9][13][11] and RNNs [2] have been applied in AA

problem, showing outstanding performance. Especially,

the effect of character n-grams applied on the CNN model

is remarkable. LSTM is a variant of RNN, which can deal

with the shortcomings of RNN in processing long

sequences. LSTM has been successfully applied in text

classification [16][17]. The method of applying character

n-grams on LSTMs also performs competitively [13].

Features hidden in posts can also be utilized for AA. Post

authors’ sentiment orientations are one of the important

latent characteristics [8]. Other features, such as text

length, number of user mentions, number of topic

mentions, and number of URLs, also help to characterize

authors’ writing styles [8].

In this paper, we propose approaches of applying

improved character embedding to neural network models,

and introducing latent posting styles as extended features

to the architecture.

3. Methodology

In this section, we describe our proposed CNN and

LSTM-based models for AA utilizing improved character

embedding and latent posting styles.

3.1 Improved Character Embedding Method

Our proposed model is inspired by N-gram CNN [13] that

combines character n-grams and CNN. We propose a

method of applying improved character embeddings to

neural networks such as CNN and LSTM.

Character n-grams. The character n-gram method has a

remarkable performance in previous work on AA of short

texts [13]. It has been observed that social networking

platforms often emerge with informal terms. The character

n-gram method can tolerate misspellings and informal

usages of punctuation [15]. For example, the character

bigrams of “nooooooo” are represented as “no” and “oo”,

which restore the form of the term “no”. Let us consider

another example of emoticons composed of punctuations.

The character bigrams of emoticons “:-)” and “:-(“ are

respectively represented as “:-”, “-)” and “:-”, “-(“,

although the two emoticons have the same component “:-”,

the different components “-)” and “-(” hide the key

sentiments of the emoticons. The character n -gram method

can also extend the original short word -level sentence into

a longer character-level sentence, which improves the

sparseness of short text to a certain extent.

Improved Character Embedding. We observe that users

frequently use mentions @<username> and hashtags

#<topic> on social networking platforms such as Twi tter.

Schwartz et al. [12] replace all the forms of mentions

@<username> with the same tag, ignoring the information

of the user groups followed by the authors. However, our

method retains the characteristics of user reference

information, since we believe the same users mentioned

frequently in posts will help identify authorship. Similarly,

topic references are useful features. In our method, we

keep all forms @<username> and #<topic> from being

split by the character n-grams method. Therefore, we

obtain sequences of mixed words and character n-grams.

Table 1 shows examples of the mixed words and character

bigrams. First, texts are transformed into lowercase.

Considering that values of URLs, numbers, time, dates are

sparsely occurring in posts, we replace these values with

the tags “U,” “N,” “T,” “D,” respectively.

Sentences Mixture of Words and Character Bigrams

@rose you jump, i

jump! #titanic

@rose yo ou u_ _j ju um mp p, ,_ _i i_ _j ju

um mp p! #titanic

how to lose weight?

U #health

ho ow w_ _t to o_ _l lo os se e_ _w we ei ig

gh ht t? ?_ _U #health

report at T:

temperature: N,
daily rain: N

#weather

re ep po or rt t_ _a at t_ _T T: :_ _t te em mp
pe er ra at tu ur re e: :_ _N N, ,_ _d da ai i l

ly y_ _r ra ai in n: :_ _N #weather

Table 1: Examples of mixed words and character bigrams. We

replace spaces in the sentences with "_".

Then we use Word2Vec’s Skip-Gram model with

window size 5 to pre-train 300-dimension word vectors on

the training set which includes mixtures of words and

character n-grams. The Skip-Gram model works better

than the CBOW model in predicting words from

experience. In the character embedding module, we use

pre-trained word vectors to represent the mixed sequences

of words and character n-grams. The dimension of the

embedding matrix is set to 140 on Twitter datasets and

sequences with a length shorter than 140 are padded.

Neural Network Models. We apply our improved

character embedding method on typical neural networks,

namely CNN and LSTM. Our proposed architecture

receives a mixed sequence of words and character n -grams

as input. Then we use neural network models to

automatically extract textual features of the sequence and

obtain a compact feature vector representat ion. Finally, we

apply a fully connected module with softmax function to

process the representation for author classification.

Figure 1 presents the adoption of the CNN model into

this architecture. In the convolutional layer, we use three

types of filters with different size w and n filters for

each type. Then the convolution results representing text

features are upstreamed to a pooling layer with a

max-pooling function to extract the most important

features. Finally, the representation from concatenated

pooling outputs is passed to the fully connected layer.

Figure 1: CNN model with improved character embedding.

Mixed words and character n -grams are embedded to

convolutional and max pooling layers, and the final

representation is passed to a fully connected module with

softmax function for classification.

Figure 2: LSTM model with improved character embedding.

Mixed words and character n -grams are embedded to Bi -LSTM

layer, and the final output of the last time step is pass ed to a

fully connected module with softmax function for classification.

The situation where a LSTM model replaces the CNN

module is presented in Figure 2. We adopt a two -layer

bi-directional LSTM (Bi-LSTM) model to obtain the

feature representation of an input sequence. Then we take

the output of the last time step as the input to the fully

connected module.

3.2 Latent Posting Styles

Most previous work focuses on textual features in AA

tasks while very few explore latent features observed in

posts. Authors’ sentiment orientation and other posting

expressions can help identify authors’ writing styles,

especially useful for AA of short texts [8]. We divide the

post length into 5 levels (L1, L2, L3, L4, L5) ranging from

0 to 140. For the characteristics of using @<username>,

#<topic>, URLs, numbers, t ime, dates and emoticons, we

count their frequencies. Each post carries its author ’s

sentiment, which may be positive/neutral/negative, and

objective/subjective. We use polarity and subjectivity

scores generated by TextBlob [7] for these abstract

sentiments. Polarity scores vary from -1.0 to 1.0, where

1.0 is positive. Subjective score describes the degree of

subjectivity of a post, which varies from 0 to 1.0. To

incorporate sentiment characteristics into posting style

vectors, we assign discrete levels P1, P2, P3, P4, P5 to

polarity scores, and similarly assign discrete levels S1, S2,

S3, S4, S5 to subjectivity scores. The tag representations

for ten latent posting characteristics are shown in Table 2.

Features Encoding Tags

length level L1-L5

@<username> count ‘M’+count

#<topic> count ‘H’+count

URLs count ‘U’+count

numbers count ‘N’+count

time count ‘T’+count

dates count ‘D’+count

emoticons count ‘E’+count

polarity level P1-P5

subjectivity level S1-S5

Table 2: Tag representations for latent posting features.

All the latent features of posts are extracted to form a

dataset with sequences of feature tags. Then we train a

CNN or LSTM model with appropriate hyperparameters,

using posting-style vectors pre-trained by Skip-Gram in

the word embedding layer, to generate vector

representations of posting styles. Finally, we concatenate

these tag representations with the text representations

obtained from the neural network models, as input to the

fully connected softmax module. The overall system is

depicted in Figure 3. It is worth noting that the neural

network model used to capture the tag features is the same

as that used to capture text representations. In our

experiments, we compare combinations o f (text, CNN)

(feature tags, CNN) and (text, LSTM) (feature tags,

LSTM), where each bracket represents (input sequence,

neural network model).

Figure 3: Proposed model with latent posting styles. Tag

sequences are embedded by Skip-Gram into tag representations,

which are passed to the CNN/LSTM model, and its output is

concatenated with the output text representation from the left

part, as input to the softmax layer.

4 Experiments

In order to verify the effectiveness o f our methods, we

utilize the Twitter dataset from Schwartz et al. [12], which

contains groups of up to 9000 Twitter users with up to

1000 posts for each user, and approximately 9 million

posts in total. We also adopt their experimental

configurations. We employ 10-fold cross validation on all

experiments.

Pre-Processing. Non-English tweets, tweets with less than

three words and retweets have been already removed from

the dataset. Considering sparsity, we replace URLs,

numbers, dates and time with tags ‘U’, ‘N’, ‘D’ and ‘T’

respectively. Since @ and # may express different

meanings in tweets, we distinguish mentions

@<username> from occurrences of ‘@’ in email addresses,

emoticons ‘:@’ and @ meant as ‘at’. We also distinguish

hashtags in the forms #<topic> from others.

Baselines. We construct a logistic regression classifier

over TF-IDF scores of words as a baseline. We also refer

to the experimental results of [13], which applies

word-level or character-level word embeddings on CNN

and LSTM models, for comparisons.

Our Models. We train CNN and LSTM models over word

vectors of mixed words and character n -grams (n = 1, 2, 3)

which are pre-trained by Skip-Gram. We further

incorporate embeddings of latent posting styles, and

evaluate their effectiveness over the above models.

All the methods and descript ions used for our

experimental evaluations are listed in Table 3.

Methods Descriptions

B
a

s
e

li
n

e
s

TF-IDF+LR

Traditional machine learning -based,

calculate TF-IDF scores for words,

then train a logistic regression
classifier.

CNN-W
Train a CNN model over word
embeddings. [13]

CNN-1 Train a CNN model over embeddings of

character n-grams (n = 1, 2). [13] CNN-2

LSTM-2

[13] evaluates an LSTM trained on

bigrams. LSTM has been successfully

applied in text classification [16].

O
u

r
 M

o
d

e
ls

C
N

N
-b

a
s
e

d
 m

o
d

e
ls

 CNN-WC1 Word vectors of mixed words and

character n -grams (n = 1, 2, 3)

pre-trained by Skip -Gram are supplied

to the character embedding layer of the

CNN model.

CNN-WC2

CNN-WC3

CNN-WC1+LPS Combinations of latent posting styles

(LPS) with CNN-WC1, CNN-WC2, and

CNN-WC3.
CNN-WC2+LPS
CNN-WC3+LPS

L
S

T
M

-b
a

s
e

d
 m

o
d

e
ls

 LSTM-WC1 Word vectors of mixed words and

character n -grams (n = 1, 2, 3)

pre-trained by Skip -Gram are supplied

to the character embedding layer of

LSTM.

LSTM-WC2

LSTM-WC3

LSTM-WC1+LPS
Combinations of latent posting styles

(LPS) with LSTM-WC1, LSTM-WC2,

and LSTM-WC3.
LSTM-WC2+LPS

LSTM-WC3+LPS

Table 3: Overall methods and their descriptions. WC: mixed

words and character n -grams. LPS: latent posting styles.

4.1 Experimental Details

In the stage of model construction, we experimentally set

the best combination of hyperparameters for the CNN and

LSTM models, by implementing the two models on a small

set for hyperparameter tuning. The details of the

hyperparameter combinations for the CNN and LSTM

models are shown in Table 4.

Layer
of

Layers
Hyperparameters

Embedding 1
length 140

dimension 300

CNN 3

fil ter_sizes [3, 4, 5]

num_filters [128, 128, 128]

pooling max

LSTM 2
architecture bi-directional

hidden_dim 128

Fully Connected 1 # of units
Depends on the

number of authors

Table 4: Hyperparameter details of CNN and LSTM models.

In extended experiments, we integrate latent posting

styles trained by CNN or LSTM model with original

neural network architecture. The details of hyperparameter

settings for training latent posting styles are shown in

Table 5.

Layer
of

Layers
Hyperparameters

Embedding 1
length 10

dimension 100

CNN 2

fil ter_sizes [2, 3]

num_filters [64, 64]

pooling max

LSTM 2
architecture bi-directional

hidden_dim 64

Fully Connected 1 # of units
Depends on the

number of authors

Table 5: Hyperparameter details of training latent posting styles.

In addition, we add a dropout layer with keep_prob of

0.5 to the CNN and LSTM models to prevent the models

from overfitting. We set the batch_size of 64 to process

the data in batches for speeding up the model training

process. We set a learning rate of 1e -3 and a learning rate

decay of 0.9 to help the model converge while training.

Besides, we introduce gradient cl ipping with the threshold

set to 6.0 to solve the problem of gradient explos ion. We

limit the training epoch to 100 and screen out the best

models with the minimum validation error.

4.2 Basic Results

First, we randomly select 10 groups of datasets containing

50 users and their 1000 tweets each. We evaluate the

average accuracy of the models on the 10 groups of

datasets with cross validation on training sets. The

experimental results are shown in Table 6.

Methods Accuracy

B
a

s
e

li
n

e
s
 TF-IDF+LR 0.674

CNN-W 0.548

CNN-1 0.757

CNN-2 0.761

LSTM-2 0.645

O
u

r
 M

o
d

e
ls

C
N

N
-b

a
s
e

d

m
o

d
e

ls

CNN-WC1 0.815

CNN-WC2 0.828

CNN-WC3 0.798

CNN-WC1+LPS 0.824

CNN-WC2+LPS 0.836

CNN-WC3+LPS 0.806

L
S

T
M

-b
a

s
e

d

m
o

d
e

ls

LSTM-WC1 0.717

LSTM-WC2 0.739

LSTM-WC3 0.701

LSTM-WC1+LPS 0.744

LSTM-WC2+LPS 0.762

LSTM-WC3+LPS 0.725

Table 6: Accuracy for 50 authors with 1000 tweets each.

From the results of the baselines, we can observe that

although the traditional machine learning method

(TF-IDF+LR) can achieve a good accuracy of 0.674, the

deep learning methods have greater potential for

improvement. For the deep learning models, the CNN

models far surpass the LSTM models in performance with

the same character n-grams embeddings. On the other

hand, the CNN models with character n-grams embeddings

far outperform those with word embeddings. In the

baseline system, CNN-2 achieves the best accuracy of

0.761, which is the state-of-the-art result on this dataset.

Figure 4: Accuracy comparison among our models. WCn: mixed

words and character n -grams (n = 1, 2, 3). LPS: latent posting

styles.

Our proposed models have two core improvements:

improved character embedding and latent posting styles,

which contribute to significant improvements over the

baselines. CNN-WC2+LPS model shows the best

performance with an accuracy of 0.836, exceeding CNN -2

by 7.5%. Figure 4 illustrates the performance of the CNN

and LSTM models using mixed words and character

n-grams (WCn, n = 1, 2, 3) and latent posting styles (LPS),

with n-grams as the abscissa and accuracy as the ordinate.

Our method of applying embeddings of mixed words and

character n-grams on neural networks achieves the

maximum performance when n = 2. In addition, the

CNN-based models are far superior to the LSTM -based

models. On the other hand, the method of introducing

latent posting styles can effectively improve the models

and the effect is more significant on LSTM-based models,

which has about 2.5% improvement, while about 0.8%

improvement on CNNs. Figure 5 shows the superiorit ies of

our models over the baselines (CNN-1, CNN-2 and

LSTM-2). Obviously, our improved character n-grams

embedding method outperforms the existing character

n-grams embedding method. It also shows that adding

additional latent posting styles helps model optimization.

Figure 5: Accuracy comparison of our models with the baselines

(CNN-1, CNN-2 and LSTM-2). WCn: mixed words and character

n-grams (n = 1, 2, 3). LPS: latent posting styles.

4.3 Varying Numbers of Authors

To verify the effectiveness of our methods, we further

explore the performance of our models in more difficult

scenarios, as Schwartz et al. did [12]. One of the scenarios

is when the number of authors changes with the same

number of tweets per author. We conduct several series of

experiments using the same selected groups of 100, 200,

500, 1000 authors and 200 tweets each. Considering that

the method of mixed words and character n-grams

performs obviously better when n = 1, 2 than when n = 3,

we omit experiments when n = 3. The experimental results

are presented in Table 7. The increase in the number of

authors makes the task of authorship attribution more

difficult. Figure 6 also illustrates this situation.

Nevertheless, Our CNN-based models (see yellow marks

in Figure 6) still have clear advantages over all baselines ,

and our LSTM-based models (see green marks in Figure 6)

are still better than LSTM-2 and CNN-W. When the

number of authors reaches 1000, CNN -WC2+LPS model

even obtains an accuracy of 0.510, which is a 12.6%

improvement over the best baseline.

Methods
Number of Authors

100 200 500 1000

B
a

s
e

li
n

e
s
 TF-IDF+LR 0.454 0.453 0.411 0.384

CNN-W 0.241 0.208 0.161 0.127

CNN-1 0.508 0.473 0.417 0.359

CNN-2 0.506 0.481 0.422 0.365

LSTM-2 0.338 0.335 0.298 0.248

O
u

r
 M

o
d

e
ls

C
N

N
s
 CNN-WC1 0.580 0.556 0.509 0.453

CNN-WC2 0.598 0.590 0.555 0.489

CNN-WC1+LPS 0.609 0.590 0.551 0.508

CNN-WC2+LPS 0.616 0.599 0.564 0.510

L
S

T
M

s
 LSTM-WC1 0.414 0.338 0.308 0.253

LSTM-WC2 0.428 0.357 0.324 0.259

LSTM-WC1+LPS 0.435 0.358 0.321 0.265

LSTM-WC2+LPS 0.458 0.386 0.339 0.288

Table 7: Accuracy for varying numbers of authors with 200

tweets each.

Figure 6: Accuracy comparison with the number of authors

increasing.

Methods
Number of Tweets

500 200 100 50

B
a

s
e

li
n

e
s
 TF-IDF+LR 0.614 0.551 0.486 0.372

CNN-W 0.509 0.460 0.417 0.366

CNN-1 0.717 0.665 0.617 0.562

CNN-2 0.724 0.665 0.613 0.542

LSTM-2 0.597 0.528 0.438 0.364

O
u

r
 M

o
d

e
ls

C
N

N
s
 CNN-WC1 0.772 0.690 0.610 0.572

CNN-WC2 0.770 0.677 0.550 0.460

CNN-WC1+LPS 0.783 0.696 0.617 0.581

CNN-WC2+LPS 0.792 0.701 0.554 0.471

L
S

T
M

s
 LSTM-WC1 0.667 0.588 0.492 0.387

LSTM-WC2 0.686 0.609 0.513 0.401

LSTM-WC1+LPS 0.674 0.598 0.506 0.396

LSTM-WC2+LPS 0.690 0.617 0.523 0.409

Table 8: Accuracy for varying numbers of tweets under 50

authors.

4.4 Varying Numbers of Tweets

Another scenario is when the number of tweets changes

under the same number of authors. We evaluate our models

on groups of the dataset with 50 authors and their 50, 100,

200, 500 tweets each. The results when varying numbers

of tweets are shown in Table 8. When the number of tweets

per author decreases, the number of training samples for

each author decreases, making the classification task more

difficult. The results in Figure 7 follows this trend.

Considering that all the datasets are too small, we refer to

the method of Shrestha et al. [13], which takes the average

accuracy of the experiments on 10 disjoint datasets as the

results. From the evaluation results, we can conclude that

our CNN-based models perform more stable when n = 1

(see red marks in Figure 7) than when n = 2 (see blue

marks in Figure 7), which is consistent with one of the

findings in [13]. We have noticed that when the number of

tweets per author is no more than 100, CNN-WC2 and

CNN-WC2+LPS models perform worse than CNN-2. This

is because our methods are more dependent on information,

so they cannot show obvious advantages on very small

datasets. Besides, our LSTM-based models (see green

marks in Figure 7) perform better than baselines except

CNN-1 and CNN-2.

Figure 7: Accuracy comparison with the number of tweets per

author decreasing.

5 Conclusions

This paper discussed new approaches for authorship

attribution on short texts. The superior performance of the

convolutional neural network with character n -grams

embeddings has inspired us to propose new improved

methods, using mixed words and character n-grams,

instead of just character n-grams. We set up two sets of

comparative experiments to test our ideas on CNNs and

LSTMs. Rigorous experiments prove that our method s

show clear advantages for solving AA problems on short

texts. In addition, we capture ten latent posting styles for

each tweet and use the corresponding neural network to

train posting-style vectors, which are then integrated with

the network architecture. The introduction of latent

posting styles shows different performance improv ements

in the CNN and LSTM models, which is about 0.8%

improvement in the former and about 2.5% improvement

in the latter. Our best method achieves an accuracy of

83.6%, which is 7.5% improvement over the

state-of-the-art result. Furthermore, as the number of

authors increases or the number of samples per author

decreases, the AA tasks become more difficult.

Nevertheless, our models have clear advantages.

References
[1] A. Abbasi and H. Chen, “Writeprints: A stylometric

approach to identity-level identification and
similarity detection in cyberspace,” ACM
Transactions on Information Systems (TOIS), 26(2):7,
pp. 17-29, 2008.

[2] D. Bagnall, “Author identification using

multi-headed recurrent neural network,” In Working
Notes Papers of the CLEF 2015 Evaluation Labs, Vol.
1391.

[3] M. Koppel and Y. Winter, “Determining if two
documents are written by the same author,” Journal
of the Association for Information Science and
Technology, 65(1), pp. 178–187, 2014.

[4] M. Koppel, J. Schler, and S. Argamon, “Authorship
attribution in the wild,” Language Resources and
Evaluation, 45(1), pp. 83–94, 2011.

[5] R. Layton, P. Watters, R. Dazeley, “Authorship
Attribution for Twitter in 140 characters or Less”,
IEEE Proc. 2nd Cybercrime and Trustworthy
Computing Workshop, CTC’ 10, Washington D.C., A,
pp. 1-8, 2010.

[6] Y. Lin, X. Wang, and A. Zhou, “Opinion Analysis for
Online Reviews,” World Scientific, Vol. 4, 2016.

[7] U. Malik, “Python for NLP: Introduction to the
TextBlob Library,” Stack Abuse, April 15, 2019.
[Online]. Available:
https://stackabuse.com/python-for-nlp-introduction-t
o-the-textblob-library/. [Accessed April 15, 2019].

[8] L. Patamawadee and M. Iwaihara, “Utilizing Latent
Posting Style for Authorship Attribution on Short
Texts,” IEEE CBDCom 2019, Fukuoka, pp.1015-1022,
Aug. 2019.

[9] D. Rhodes, “Author attribution with cnns,” 2015.
[online]. Avaiable: https://www. semanticscholar.
org/paper/Author-Attribution-with-Cnn-s-Rhodes/0a
904f9d6b47dfc574f681f4d3b41bd840871b6f/pdf.
[Accessed on Aug. 22, 2016].

[10] A. Rocha, et al. “Authorship Attribution for Social
Media Forensics,” IEEE Trans. Info. Forensics and
Security, Vol.12, No. 1, Jan. 2017.

[11] S. Ruder, P. Ghaffari, J.G. Breslin, “Character -level
and multi-channel convolutional neural networks for
large-scale authorship attribution,” arXiv preprint
arXiv: 1609.06686, 2016.

[12] R. Schwartz, O. Tsur, A. Rappoport, and M. Koppel,
“Authorship Attribution of Micro -Messages,” Proc.
2013 Conf. Empirical Methods in Natural Language
Processing, Seattle, pp. 1880-1891, Oct. 2013.

[13] P. Shrestha, S. Sierra, F. A. Gonzalez, P. Posso, M.
Montes-y-Gomex, and T. Solorio, “Convolutional
Neural Networks for Authorship Attribution of Short
Texts,” Proc. 15th Conf. European Chapter of the
Assoc. Computational Linguistics, Vol. 2, Valencia,
pp. 669-674, Apr. 2017.

[14] T. Solorio, S. Pillay, S. Raghavan, and M.
Montes-Gomez, “Modality specific meta features for
authorship attribution in web forum posts,” Proc. 5th
Conf. International Joint on Natural Language
Processing, pp. 156-164, Nov. 2011.

[15] E. Stamatatos, “A survey of modern authorship
attribution methods,” Journal of the American
Society for Information Science and Technology,
60(3), pp. 538–556, 2009.

[16] K.S. Tai, R. Socher, and C.D. Manning, “Improved
semantic representations from tree-structured long
short-term memory networks,” arXiv preprint arXiv:
1503.00075, 2015.

[17] D. Tang, B. Qin, and T. Liu, “Document modeling
with gated recurrent neural network for sentiment
classification,” Proc. 2015 Conf. Empirical Methods
in Natural Language Processing, pp. 1422-1432,

2015.

