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Abstract  Automatically detecting irony is helpful and important for mining fine-grained information from social web data. 

Therefore, the International Workshop on Semantic Evaluation (SemEval) presented the first shared task on irony detection 

called "Irony Detection in English Tweets" in 2018. For this task, the system should determine whether the tweet is ironic (Task 

A) and which type of irony is expressed (Task B). The top teams obtained 𝐹1=0.71 for Task A and 𝐹1=0.51 for Task B. These 

teams all used LSTM models exploiting some word embedding features like Glove embeddings. While in recent years more 

powerful models like BERT and XLNet appeared. Therefore, in our paper, we evaluate the performance of BERT and XLNet 

models on Irony Detection in English Tweets by two methods: word embedding method and fine-tuning method. Through the 

experiment, these two models could get relatively high scores showing that BERT and XLNet models are capable to understand 

the irony to some extent. 
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1. Introduction 

The development of the social web has stimulated the 

use of figurative and creative language, including irony, in 

public [1]. According to literary scholars  [2], irony was 

defined as a trope where the speaker intends to express a 

contradictory situation or the opposite meaning of what is 

literally said. It adopts a subtle technique where 

incongruity is used to suggest a distinction between reality 

and expectation in order to produce a humorous or 

emphatic effect on the listener.  Because irony is widely 

used in social web, it has important implications for the 

natural language processing (NLP) tasks that aim to 

understand and generate human language.  

Correctly recognizing the irony is helpful to understand 

the social web better, especially for some natural language 

processing applications such as sentiment analysis  [3]. A 

typical sentiment analysis model will classify the tweet 

“Monday mornings are my fave #not” as positive, but the 

true result is that it expresses a negative feeling [4]. 

Moreover, the SemEval-2014 shared task “Sentiment 

Analysis in Twitter” [5] demonstrated the effect of irony 

on automatic sentiment classification. The results revealed 

that, while sentiment classification performance on regular 

tweets was 𝐹1 = 0.71, scores on the ironic tweets varied 

from 𝐹1  = 0.29 to 𝐹1 = 0.57. Therefore, automatic irony 

detecting techniques are important to improve the 

performance of sentiment analysis.  

Even for human beings, recognizing an irony is 

sometimes difficult, let alone the poor intelligence of 

machine. In other word, there is just subtle difference 

between ironic and non-ironic texts. By far researchers 

have tried many ways to identify the complicated irony in 

texts or tweets. Rule-based or machine learning-based 

methods are the two popular ways in this task  [6]. Rules 

based methods usually depend on lexicons  (positive or 

negative sense words) to identify irony [7][8]. But these 

rules-based methods cannot extract the contextual 

information from texts. Traditional machine learning -based 

methods such as SVM [9] are also effective for this task, 

but time-consuming manual feature engineering is 

necessary. Recently, deep learning techniques become hot 

in this task. For example, Ghosh et al . [3] proposed to use 

a CNN-LSTM model to deal with a binary irony 

classification task. Their method got a great performance 

even without heavy feature engineering.   

  Recently, the pretrained models such as BERT and 

XLNet break the state-of-the-art result in many datasets 

including GLUE[17] and SQuAD[18]. But these datasets 

are all used for testing the progress of general language 

understanding. Whether these pretrained models such as 

BERT and XLNet are appliable for the irony which is a 

special type in daily communication requires further 

research. Therefore, in this paper, we evaluate the 

performance of BERT and XLNet models on the shared 



 

 

task “Irony Detection in English Tweets” dataset  based 

on two ways, word embedding method and fine-tuning 

method.  

In the rest of this paper,  the content of the irony 

detection task in SemEval is introduced in Section 2. The 

BERT and XLNet models are introduced in Section 3. The 

details of methods to adopt BERT and XLNet models are 

presented in Section 4. We show the experiment results in 

Section 5 and conclude in Section 6. 

 

2. Irony Detection Task in SemEval  

2.1. Task Description 

To evaluate the automatic irony detection  techniques, the 

SemEval 2018 presented a task called “Irony Detection in 

English Tweets”. The subtask A is aimed to determine 

whether a tweet is ironic. The subtask B is aimed to 

identify three ironic types of tweets: verbal irony by means 

of a polarity contrast , situational irony , or another type of 

verbal irony . Definition and example are as follows [10]: 

 

Verbal irony by means of a polarity contrast  

For this type, the polarity (positive,  negative) is inverted 

between the literal and the intended evaluation.  

⚫ I love waking up with migraines #not  

 

Situational irony  

This type is about describing situational irony, or situations  

that fail to meet some expectations.  

⚫ most of us didn’t focus in the #ADHD lecture. 

#irony  

 

Another type of  verbal irony  

This category shows no polarity contrast between the 

literal and the intended evaluation but is nevertheless 

ironic.  

⚫ Human brains disappear every day. Some of them 

have never even appeared. #brain #sarcasm  

 

2.2. Dataset 

The detailed statistics of the dataset in this task [10] are 

shown in Table 1. The three labels (i.e., V, O, and S) 

represent the three types respectively: verbal irony  by 

means of a polarity contrast, other types of verbal irony 

and situational irony. Note that Irony-related hashtags will 

not be present in the test set.  

 

 

Table 1. The detailed statistics of dataset[10] 

Task  A B 

Label Ironic  Non-

ironic  

V O S Non-

ironic  

#train  1,901 1,916 1,383 202 316 1,916 

#test  784  784  

 

2.3. Evaluation 

For both subtasks, results were evaluated using standard 

evaluation metrics, including accuracy, precision, recall 

and 𝐹1 score, calculated as follows:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
(1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(2) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(3) 

 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(4) 

 

In subtask A, the performance of systems is evaluated by 

𝐹1 for the positive class. In subtask B, the macro -averaged 

𝐹1 over all classes is used as the metric. Macro-averaging 

of the 𝐹1  score implies that all class labels have equal 

weight in the final score.  

 

2.4. Systems and results for Task A 

The result of the top 5 teams in task A[10] is shown in 

Table 2. In this table, the teams are ranked by the official 

𝐹1 score. 

 

Table 2. The top 5 teams for Task A[10] 

Team Acc  Precision  Recall 𝑭𝟏 

UCDCC 0.797  0.788  0.669  0.724  

THU_NGN  0.735  0.630  0.801  0.705  

NTUA-SLP 0.732  0.654  0.691  0.672  

WLV 0.643  0.532  0.836  0.650  

NLPRL-

IITBHU 
0.661  0.551  0.788  0.648  

Unigram 

SVM BL 
0.635  0.532  0.659  0.589  

 

As shown in Table 2, the systems of the top five teams 

outperforms the unigram SVM baseline by a sizable margin. 

For these best 5 teams, they all used training data provided 

only, which means that they didn’t use other  similar 

datasets for training.  The UCDCC team ( 𝐹1 = 0.724 ) 

developed a siamese architecture which consists of two 

subnetworks (containing an LSTM) making use of Glove 

word embeddings [11]. The THU_NGN team (𝐹1 = 0.705) 



 

 

created a densely connected LSTMs architecture based on 

pretrained word embeddings, sentiment features and 

syntactic features [12]. The NTUA-SLP team (𝐹1 = 0.672) 

built an ensemble classifier of a word-based Bi-LSTM and 

a character-based Bi-LSTM making use of pretrained 

character and word embeddings on a corpus of 550 million 

tweets [13]. The WLV team ( 𝐹1 = 0.650 ) developed an 

ensemble voting classifier  containing logistic regression 

(LR) and support vector machine (SVM) based on 

pretrained word and emoji embeddings  [14]. The NLPRL-

IITBHU team ( 𝐹1 = 0.648 ) used an XGBoost Classifier 

making use of ten types of handcrafted features  based on 

DeepMoji [15]. 

 

2.5. Systems and results for Task B  

The result of the top 5 teams in task B[10] is shown in 

Table 3 in which the teams are ranked by the official 𝐹1 

score. As observed in Table 3, the top 5 are UCDCC (𝐹1 =

0.507 ), NTUA-SLP (𝐹1 = 0.496 ), THU_NGN (𝐹1 = 0.495 ), 

NLPRL-IITBHU ( 𝐹1 = 0.474 ) and NIHRIO ( 𝐹1 = 0.444 ). 

The NIHRIO team was a multilayer perceptron-based 

architecture exploiting lexical, syntactic and semantic 

features (Glove word embeddings). Other teams’ 

approaches have been introduced in section 2.4. All teams 

exploited different approaches but all of them clearly 

outperformed the baseline.  

 

Table 3. The top 5 teams for Task B[10] 

Team Acc  Precision  Recall 𝑭𝟏 

UCDCC 0.732 0.577  0.504  0.507  

NTUA-SLP 0.652  0.496  0.512  0.496  

THU_NGN  0.605  0.486  0.541  0.495  

NLPRL-

IITBHU 

0.603 0.466  0.506  0.474  

NIHRIO 0.659 0.545  0.448  0.444  

Unigram 

SVM BL  

0.563 0.416 0.364 0.341  

 

3. New pretraining methods for NLP  

3.1. BERT 

In 2018, Jacob et al proposed a new language 

representation model called BERT[16]. The whole name of 

BERT is Bidirectional Encoder Representations from 

Transformers. BERT is pretrained on unlabeled text 

(Wikipedia) by jointly conditioning on both left and right 

context in all layers and has obtained state -of-the-art 

results on eleven natural language processing tasks, 

including increasing the GLUE[17] to 80.5%, MultiNLI 

accuracy to 86.7%, SQuAD v1.1[18] question answering 

𝐹1 score to 93.2 and SQuAD v2.0 𝐹1 score to 83.1.  

3.2. XLNet 

   In 2019, Yang et al . proposed a generalized 

autoregressive pretraining method called XLNet that uses 

a permutation language modeling objective to combine the 

advantages of autoregressive and autoencoder methods 

[19]. They claimed that XLNet outperformed BERT on 20 

tasks by a sizable margin, including question answering, 

natural language inference, sentiment analysis and 

document ranking. 

 

4. Methods to Adopt BERT/XLNet  

Our goal is to evaluate the performance of BERT and 

XLNet models in this task. For these two models, there are 

two ways to exploit BERT and XLNet models for 

classification tasks. One is called word embedding method, 

i.e., using pre-trained model to transform text into 

embeddings and classifying them with traditional machine 

learning techniques such as SVM and LR. The other one is 

to fine-tune the pre-trained model directly on the dataset 

of irony detection task in SemEval-2018. We will introduce 

these two methods in detail below.  

 

4.1. Word Embedding Method  

The general procedure for the word embedding method 

is shown in Figure1. At first, we built a tokenizer to 

transform text to token ids and pad these id lists to the same 

length. In order to let the model know which position is the 

padding, we should also generate attention masks. Then we 

send token ids and attention masks into the model  and get 

the output. Here we just use a part of output as word 

embedding. Finally, we develop a traditional machine 

learning model to fit these word embeddings . After the 

supervised learning, then this model can predict the label 

of the given tweet.  

In this method, we choose several traditional machine 

learning classification techniques including Random 

Forest(RF), Naïve Bayesian(NB), Logistic Regression(LR) 

and Support Vector Machine(SVM).  

 

4.2. Fine-tuning Method  

The general procedure for the fine-tuning method is 

shown in Figure 2. At first, we send the training dataset 

into pre-trained model. The training dataset for this task is 

small compared with other datasets. After fine-tuning, we 

send token ids and attention masks of the test dataset into 

this fine-tuning model for prediction.  



 

 

 

Figure 1: Word Embedding Method Structure 

 

 

Figure 2: Fine-tuning Method Structure  

 

5. Experiments and Results  

In this section, we explain the experiments and show the 

results.  

5.1. Data Preprocessing  

Before the experiment, we should make some data 

preprocessing on the tweets since tweets are unstructured 

data and have many words that machine cannot recognize. 

 

1. We discard all links in the tweets since the links are 

almost YouTube short urls. These urls do not contain 

 
1 https://unicode.org/emoji/charts/full -emoji-list.html  

any useful information.  

2. Each emoji is replaced with their meaning  by emoji 

lists 1  because emojis play a significant role in 

expressing the hidden feeling that cannot observed 

in tweets. For example, the meaning of  is the 

grinning face.  

3. Hashtags are split into the readable way because 

hashtags are also important for the text 

classification since users use hashtag to indicate 

their topics and events. For example, “#SadButTrue” 

should be split into “# Sad But True”. Here, we 

calculate the probability  based on the Brown corpus 

[20] to implement this idea.  

 

5.2. Experiment Setting  

BERT has many pre-trained models. Here we only use 

bert-base-uncased, bert-base-cased, bert-large-uncased and 

bert-large-cased. For XLNet, we use xlnet-base-cased and 

xlnet-large-cased. The base means the model contains 12 

layers and 110M parameters while the large model contains 

24 layers and 340M parameters. Uncased means that the 

pretrained was done on lower-cased English text while 

cased means that the pretrained was done on normal 

English text.  

 

Also for the word embedding method, we tuned 

hyperparameters of traditional machine learning models 

for the better results. Here we use gridsearchcv function 

which will make the cross-validation automatically in 

scikit-learn to find best hyperparameters. The only thing 

we should do is to set several appropriate hyperparameters.  

For Random Forest, we tuned the number of estimators and 

max depth. For Logistic Regression, we tuned solver and 

C. For Support Vector Machine, we tuned C, gamma.  

 

5.3. Experiment results for Task A  

The result for task A based on word embedding method 

is shown in Table 4.  Here we just show the 𝐹1 score. RF, 

NB, LR, SVM are the traditional machine learning 

classification modes: Random Forest, Naïve Bayesian, 

Logistic Regression and Support Vector Machine. The first 

column is the abbreviation of model name. B, X, b, l, u and 

c correspond to BERT, XLNet, base, large, cased, uncased.  

The best score for each traditional machine learning 

method is bold in the table.  

As observed in Table 4, SVM classification algorithm 

https://unicode.org/emoji/charts/full-emoji-list.html


 

 

performs well with BERT. The best 𝐹1 score for SVM is 

0.693. This score can rank 3 rd compared with the past 

competition results. It seems like that there is a problem in 

the combination of XLNet and SVM (with *). This 

combination got the 0.048 and 0.062 which are almost near 

to 0. The reason is that the SVM model will classify all 

samples into the negative so that  the recalls are near to 0.  

Generally, we could say that in  task A, SVM > LR > RF > 

NB. 

 

Table 4. Word Embedding Results  

for Task A (𝑭𝟏 score) 

Model RF NB LR SVM 

B-b-u 0.586  0.455  0.650 0.690 

B-b-c 0.516 0.310 0.614 0.626 

B-l-u 0.517 0.333 0.602 0.650 

B-l-c 0.531 0.397 0.655  0.693  

X-b-c 0.498 0.359 0.596 0.048* 

X-l-c 0.566 0.282 0.594 0.062* 

 

The 𝐹1  score result for task A based on fine-tuning 

method is shown in Table 5. From the table, we can infer 

that the smaller batch size and the bigger epochs we set, 

the better performance we get. There are some scores that 

need attention. The symbol “-” in the table means that the 

large XLNet model is too large to train on a single 32GB 

GPU. Therefore, we do not record their score.  Moreover, 

the score of large XLNet model decrease significantly 

compared with the base XLNet model. The best 𝐹1 score 

0.704 is achieved by xlnet-base-cased model training with 

four epochs and 16 batch size. Compared with the top 5 

teams’ results, 0.704 can also rank 3 rd and better than the 

best score 0.693 based on word embedding method.  

 

Table 5. Fine-Tuning Results for Task 

A(𝑭𝟏 𝒔𝒄𝒐𝒓𝒆) 

Model E=3 

bs=64 

E=4 

bs=64  

E=4 

bs=32  

E=4 

bs=16  

B-b-u 0.629 0.628 0.660 0.661 

B-b-c 0.640 0.647 0.672 0.691 

B-l-u 0.640 0.658 0.663 0.697 

B-l-c 0.649 0.638 0.693 0.700 

X-b-c 0.645 0.679 0.669 0.704  

X-l-c - - - 0.565 

E: epochs, bs: batch size  

5.4. Experiment results for Task B  

The result for Task B based on word embedding method 

is shown in Table 6.  For task B, the LR with bert-large-

uncased got the best 𝐹1 score 0.423. But this score is not 

very good compared with the past competition results. 

Generally, we could say that in task B, LR ≈ SVM > NB > 

RF. Same with result of Task A, there is a problem in the 

combination of SVM and XLNet.  

 

Table 6. Word Embedding Results  

for Task B(𝑭𝟏 𝒔𝒄𝒐𝒓𝒆) 

Model RF NB LR SVM 

B-b-u 0.290  0.328  0.402  0.406  

B-b-c 0.266  0.307 0.369  0.355  

B-l-u 0.280  0.254  0.423  0.395  

B-l-c 0.264  0.306  0.392  0.421  

X-b-c 0.273  0.315  0.382  0.188  

X-l-c 0.234  0.157  0.345  0.188  

 

The result for Task A based on fine-tuning method is 

shown in Table 7. The “-” mean parallel training too.  From 

this table, we know that base XLNet also gets the best 𝐹1 

score 0.489 in task B. And the best 𝐹1  score for BERT 

model is 0.445. The score of large XLNet model  trained 

with four epochs and 32 batch size is still much lower than 

the base XLNet. But fortunately it is not zero again.  

Table 7. Fine-Tuning Results for Task 

B(𝑭𝟏 𝒔𝒄𝒐𝒓𝒆) 

Model E=3 

bs=64 

E=4 

bs=64  

E=4 

bs=32 

E=4 

bs=16 

B-b-u 0.360 0.385 0.419 0.426 

B-b-c 0.335 0.339 0.338 0.441 

B-l-u 0.338 0.349 0.445  0.431 

B-l-c 0.392 0.419 0.431 0.410 

X-b-c 0.413 0.461 0.489  0.436 

X-l-c - - - 0.380 

 

We should also take a closer look at performance on each 

category of irony in task B. The top five teams’ 

performance for each class is shown in Table 8[10]. V, S 

and O correspond to verbal irony, situational irony and 

other verbal irony. As can be inferred from Table 8, all 

teams got a higher score on non-ironic and  verbal ironic, 

but performs not well on the situational irony  and other 

verbal irony. The score of other verbal irony is the lowest. 

The reason might be that the other category contains 

diverse types of irony. More detailed insights should be 

provided about this category.  

Table 8. 𝑭𝟏 score of each class for Task B[10] 

Team Non- 

ironic 

V S O 



 

 

UCDCC 0.843  0.697  0.376  0.114  

NTUA-

SLP 

0.742  0.648  0.460  0.133  

THU_NGN 0.704  0.608  0.433 0.233  

NLPRL-

IITBHU 

0.689  0.636 0.387  0.185  

NIHRIO 0.763  0.607  0.317  0.087  

 

Then we look at the systems which get best 𝐹1 score, 

including bert-large-uncased + Logistic Regression, best 

fine-tuning BERT (bert-large-uncased, 4 epochs, 32 batch 

size) and best fine-tuning XLNet (xlnet-base-cased, 4 

epochs, 32 batch size).  The result of them for each category 

is shown in Table 9.  The best XLNet outperforms word 

embedding system and best BERT by a sizable margin . One 

more thing is that BERT and XLNet cannot recognize other 

verbal irony  neither while the traditional machine learning 

models can recognize it even the score is very low. 

Compared with the scores of top five teams, the best XLNet 

model performs better on the situational irony while in 

other categories the performance is not satisfying.  

 

Table 9. 𝑭𝟏 score of best three systems for 

each class for Task B  

Model Non- 

ironic 

V S O 

B-l-u+LR 0.727 0.478  0.406 0.081  

BERT-best  0.665  0.639  0.382 0 

XLNet-best 0.771 0.650  0.534  0 

 

6. Conclusion 

In this paper, we evaluate the performance of BERT and 

XLNet models based on word embedding method and fine-

tuning method on shared task “Irony Detection in English 

Tweets”. These two models could get relatively high scores 

showing that BERT and XLNet models are capable to 

understand the irony to some extent. But they still cannot 

defeat the 1st or 2nd team which used LSTMs. This can 

probably be explained by that irony is a high-level wisdom 

of humankinds and is infrequently used which seldom 

appears in the Wikipedia on which these two models were 

pretrained. Moreover, the top 1 team handled some strange 

words more carefully and used the data augmentation. 

Therefore, they got higher score for this specific task.  The 

base XLNet model got the best score for both tasks showing 

that XLNet does outperform BERT in understanding human 

language, but the large XLNet models seem to instable 

during the training process. One more thing is that fine-

tuning method outperforms the word embedding method  in 

both tasks. For the future work, a detailed research should 

be done on the other verbal irony  as well as the data 

augmentation. Moreover, some tweets need more 

preprocessing like translating the abbreviation or removing 

repeated words like “looooooong”.  
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