

DEIM Forum 2020 G1-4

Evaluation of BERT and XLNet Models on Irony Detection

in English Tweets

Cheng Zhang† Masashi Kudo† Hayato Yamana‡

†Graduate School of Fundamental Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-

8555 Japan

‡Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

E-mail: {zchelllo, kudoma34, yamana}@yama.info.waseda.ac.jp

Abstract Automatically detecting irony is helpful and important for mining fine-grained information from social web data.

Therefore, the International Workshop on Semantic Evaluation (SemEval) presented the first shared task on irony detection

called "Irony Detection in English Tweets" in 2018. For this task, the system should determine whether the tweet is ironic (Task

A) and which type of irony is expressed (Task B). The top teams obtained 𝐹1=0.71 for Task A and 𝐹1=0.51 for Task B. These

teams all used LSTM models exploiting some word embedding features like Glove embeddings. While in recent years more

powerful models like BERT and XLNet appeared. Therefore, in our paper, we evaluate the performance of BERT and XLNet

models on Irony Detection in English Tweets by two methods: word embedding method and fine-tuning method. Through the

experiment, these two models could get relatively high scores showing that BERT and XLNet models are capable to understand

the irony to some extent.

Keyword Irony Detection, Tweets, Natural Language Processing, BERT, XLNet

1. Introduction

The development of the social web has stimulated the

use of figurative and creative language, including irony, in

public [1]. According to literary scholars [2], irony was

defined as a trope where the speaker intends to express a

contradictory situation or the opposite meaning of what is

literally said. It adopts a subtle technique where

incongruity is used to suggest a distinction between reality

and expectation in order to produce a humorous or

emphatic effect on the listener. Because irony is widely

used in social web, it has important implications for the

natural language processing (NLP) tasks that aim to

understand and generate human language.

Correctly recognizing the irony is helpful to understand

the social web better, especially for some natural language

processing applications such as sentiment analysis [3]. A

typical sentiment analysis model will classify the tweet

“Monday mornings are my fave #not” as positive, but the

true result is that it expresses a negative feeling [4].

Moreover, the SemEval-2014 shared task “Sentiment

Analysis in Twitter” [5] demonstrated the effect of irony

on automatic sentiment classification. The results revealed

that, while sentiment classification performance on regular

tweets was 𝐹1 = 0.71, scores on the ironic tweets varied

from 𝐹1 = 0.29 to 𝐹1 = 0.57. Therefore, automatic irony

detecting techniques are important to improve the

performance of sentiment analysis.

Even for human beings, recognizing an irony is

sometimes difficult, let alone the poor intelligence of

machine. In other word, there is just subtle difference

between ironic and non-ironic texts. By far researchers

have tried many ways to identify the complicated irony in

texts or tweets. Rule-based or machine learning-based

methods are the two popular ways in this task [6]. Rules

based methods usually depend on lexicons (positive or

negative sense words) to identify irony [7][8]. But these

rules-based methods cannot extract the contextual

information from texts. Traditional machine learning -based

methods such as SVM [9] are also effective for this task,

but time-consuming manual feature engineering is

necessary. Recently, deep learning techniques become hot

in this task. For example, Ghosh et al . [3] proposed to use

a CNN-LSTM model to deal with a binary irony

classification task. Their method got a great performance

even without heavy feature engineering.

 Recently, the pretrained models such as BERT and

XLNet break the state-of-the-art result in many datasets

including GLUE[17] and SQuAD[18]. But these datasets

are all used for testing the progress of general language

understanding. Whether these pretrained models such as

BERT and XLNet are appliable for the irony which is a

special type in daily communication requires further

research. Therefore, in this paper, we evaluate the

performance of BERT and XLNet models on the shared

task “Irony Detection in English Tweets” dataset based

on two ways, word embedding method and fine-tuning

method.

In the rest of this paper, the content of the irony

detection task in SemEval is introduced in Section 2. The

BERT and XLNet models are introduced in Section 3. The

details of methods to adopt BERT and XLNet models are

presented in Section 4. We show the experiment results in

Section 5 and conclude in Section 6.

2. Irony Detection Task in SemEval

2.1. Task Description

To evaluate the automatic irony detection techniques, the

SemEval 2018 presented a task called “Irony Detection in

English Tweets”. The subtask A is aimed to determine

whether a tweet is ironic. The subtask B is aimed to

identify three ironic types of tweets: verbal irony by means

of a polarity contrast , situational irony , or another type of

verbal irony . Definition and example are as follows [10]:

Verbal irony by means of a polarity contrast

For this type, the polarity (positive, negative) is inverted

between the literal and the intended evaluation.

⚫ I love waking up with migraines #not

Situational irony

This type is about describing situational irony, or situations

that fail to meet some expectations.

⚫ most of us didn’t focus in the #ADHD lecture.

#irony

Another type of verbal irony

This category shows no polarity contrast between the

literal and the intended evaluation but is nevertheless

ironic.

⚫ Human brains disappear every day. Some of them

have never even appeared. #brain #sarcasm

2.2. Dataset

The detailed statistics of the dataset in this task [10] are

shown in Table 1. The three labels (i.e., V, O, and S)

represent the three types respectively: verbal irony by

means of a polarity contrast, other types of verbal irony

and situational irony. Note that Irony-related hashtags will

not be present in the test set.

Table 1. The detailed statistics of dataset[10]

Task A B

Label Ironic Non-

ironic

V O S Non-

ironic

#train 1,901 1,916 1,383 202 316 1,916

#test 784 784

2.3. Evaluation

For both subtasks, results were evaluated using standard

evaluation metrics, including accuracy, precision, recall

and 𝐹1 score, calculated as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
(1)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(2)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(3)

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(4)

In subtask A, the performance of systems is evaluated by

𝐹1 for the positive class. In subtask B, the macro -averaged

𝐹1 over all classes is used as the metric. Macro-averaging

of the 𝐹1 score implies that all class labels have equal

weight in the final score.

2.4. Systems and results for Task A

The result of the top 5 teams in task A[10] is shown in

Table 2. In this table, the teams are ranked by the official

𝐹1 score.

Table 2. The top 5 teams for Task A[10]

Team Acc Precision Recall 𝑭𝟏

UCDCC 0.797 0.788 0.669 0.724

THU_NGN 0.735 0.630 0.801 0.705

NTUA-SLP 0.732 0.654 0.691 0.672

WLV 0.643 0.532 0.836 0.650

NLPRL-

IITBHU
0.661 0.551 0.788 0.648

Unigram

SVM BL
0.635 0.532 0.659 0.589

As shown in Table 2, the systems of the top five teams

outperforms the unigram SVM baseline by a sizable margin.

For these best 5 teams, they all used training data provided

only, which means that they didn’t use other similar

datasets for training. The UCDCC team (𝐹1 = 0.724)

developed a siamese architecture which consists of two

subnetworks (containing an LSTM) making use of Glove

word embeddings [11]. The THU_NGN team (𝐹1 = 0.705)

created a densely connected LSTMs architecture based on

pretrained word embeddings, sentiment features and

syntactic features [12]. The NTUA-SLP team (𝐹1 = 0.672)

built an ensemble classifier of a word-based Bi-LSTM and

a character-based Bi-LSTM making use of pretrained

character and word embeddings on a corpus of 550 million

tweets [13]. The WLV team (𝐹1 = 0.650) developed an

ensemble voting classifier containing logistic regression

(LR) and support vector machine (SVM) based on

pretrained word and emoji embeddings [14]. The NLPRL-

IITBHU team (𝐹1 = 0.648) used an XGBoost Classifier

making use of ten types of handcrafted features based on

DeepMoji [15].

2.5. Systems and results for Task B

The result of the top 5 teams in task B[10] is shown in

Table 3 in which the teams are ranked by the official 𝐹1

score. As observed in Table 3, the top 5 are UCDCC (𝐹1 =

0.507), NTUA-SLP (𝐹1 = 0.496), THU_NGN (𝐹1 = 0.495),

NLPRL-IITBHU (𝐹1 = 0.474) and NIHRIO (𝐹1 = 0.444).

The NIHRIO team was a multilayer perceptron-based

architecture exploiting lexical, syntactic and semantic

features (Glove word embeddings). Other teams’

approaches have been introduced in section 2.4. All teams

exploited different approaches but all of them clearly

outperformed the baseline.

Table 3. The top 5 teams for Task B[10]

Team Acc Precision Recall 𝑭𝟏

UCDCC 0.732 0.577 0.504 0.507

NTUA-SLP 0.652 0.496 0.512 0.496

THU_NGN 0.605 0.486 0.541 0.495

NLPRL-

IITBHU

0.603 0.466 0.506 0.474

NIHRIO 0.659 0.545 0.448 0.444

Unigram

SVM BL

0.563 0.416 0.364 0.341

3. New pretraining methods for NLP

3.1. BERT

In 2018, Jacob et al proposed a new language

representation model called BERT[16]. The whole name of

BERT is Bidirectional Encoder Representations from

Transformers. BERT is pretrained on unlabeled text

(Wikipedia) by jointly conditioning on both left and right

context in all layers and has obtained state -of-the-art

results on eleven natural language processing tasks,

including increasing the GLUE[17] to 80.5%, MultiNLI

accuracy to 86.7%, SQuAD v1.1[18] question answering

𝐹1 score to 93.2 and SQuAD v2.0 𝐹1 score to 83.1.

3.2. XLNet

 In 2019, Yang et al . proposed a generalized

autoregressive pretraining method called XLNet that uses

a permutation language modeling objective to combine the

advantages of autoregressive and autoencoder methods

[19]. They claimed that XLNet outperformed BERT on 20

tasks by a sizable margin, including question answering,

natural language inference, sentiment analysis and

document ranking.

4. Methods to Adopt BERT/XLNet

Our goal is to evaluate the performance of BERT and

XLNet models in this task. For these two models, there are

two ways to exploit BERT and XLNet models for

classification tasks. One is called word embedding method,

i.e., using pre-trained model to transform text into

embeddings and classifying them with traditional machine

learning techniques such as SVM and LR. The other one is

to fine-tune the pre-trained model directly on the dataset

of irony detection task in SemEval-2018. We will introduce

these two methods in detail below.

4.1. Word Embedding Method

The general procedure for the word embedding method

is shown in Figure1. At first, we built a tokenizer to

transform text to token ids and pad these id lists to the same

length. In order to let the model know which position is the

padding, we should also generate attention masks. Then we

send token ids and attention masks into the model and get

the output. Here we just use a part of output as word

embedding. Finally, we develop a traditional machine

learning model to fit these word embeddings . After the

supervised learning, then this model can predict the label

of the given tweet.

In this method, we choose several traditional machine

learning classification techniques including Random

Forest(RF), Naïve Bayesian(NB), Logistic Regression(LR)

and Support Vector Machine(SVM).

4.2. Fine-tuning Method

The general procedure for the fine-tuning method is

shown in Figure 2. At first, we send the training dataset

into pre-trained model. The training dataset for this task is

small compared with other datasets. After fine-tuning, we

send token ids and attention masks of the test dataset into

this fine-tuning model for prediction.

Figure 1: Word Embedding Method Structure

Figure 2: Fine-tuning Method Structure

5. Experiments and Results

In this section, we explain the experiments and show the

results.

5.1. Data Preprocessing

Before the experiment, we should make some data

preprocessing on the tweets since tweets are unstructured

data and have many words that machine cannot recognize.

1. We discard all links in the tweets since the links are

almost YouTube short urls. These urls do not contain

1 https://unicode.org/emoji/charts/full -emoji-list.html

any useful information.

2. Each emoji is replaced with their meaning by emoji

lists 1 because emojis play a significant role in

expressing the hidden feeling that cannot observed

in tweets. For example, the meaning of is the

grinning face.

3. Hashtags are split into the readable way because

hashtags are also important for the text

classification since users use hashtag to indicate

their topics and events. For example, “#SadButTrue”

should be split into “# Sad But True”. Here, we

calculate the probability based on the Brown corpus

[20] to implement this idea.

5.2. Experiment Setting

BERT has many pre-trained models. Here we only use

bert-base-uncased, bert-base-cased, bert-large-uncased and

bert-large-cased. For XLNet, we use xlnet-base-cased and

xlnet-large-cased. The base means the model contains 12

layers and 110M parameters while the large model contains

24 layers and 340M parameters. Uncased means that the

pretrained was done on lower-cased English text while

cased means that the pretrained was done on normal

English text.

Also for the word embedding method, we tuned

hyperparameters of traditional machine learning models

for the better results. Here we use gridsearchcv function

which will make the cross-validation automatically in

scikit-learn to find best hyperparameters. The only thing

we should do is to set several appropriate hyperparameters.

For Random Forest, we tuned the number of estimators and

max depth. For Logistic Regression, we tuned solver and

C. For Support Vector Machine, we tuned C, gamma.

5.3. Experiment results for Task A

The result for task A based on word embedding method

is shown in Table 4. Here we just show the 𝐹1 score. RF,

NB, LR, SVM are the traditional machine learning

classification modes: Random Forest, Naïve Bayesian,

Logistic Regression and Support Vector Machine. The first

column is the abbreviation of model name. B, X, b, l, u and

c correspond to BERT, XLNet, base, large, cased, uncased.

The best score for each traditional machine learning

method is bold in the table.

As observed in Table 4, SVM classification algorithm

https://unicode.org/emoji/charts/full-emoji-list.html

performs well with BERT. The best 𝐹1 score for SVM is

0.693. This score can rank 3 rd compared with the past

competition results. It seems like that there is a problem in

the combination of XLNet and SVM (with *). This

combination got the 0.048 and 0.062 which are almost near

to 0. The reason is that the SVM model will classify all

samples into the negative so that the recalls are near to 0.

Generally, we could say that in task A, SVM > LR > RF >

NB.

Table 4. Word Embedding Results

for Task A (𝑭𝟏 score)

Model RF NB LR SVM

B-b-u 0.586 0.455 0.650 0.690

B-b-c 0.516 0.310 0.614 0.626

B-l-u 0.517 0.333 0.602 0.650

B-l-c 0.531 0.397 0.655 0.693

X-b-c 0.498 0.359 0.596 0.048*

X-l-c 0.566 0.282 0.594 0.062*

The 𝐹1 score result for task A based on fine-tuning

method is shown in Table 5. From the table, we can infer

that the smaller batch size and the bigger epochs we set,

the better performance we get. There are some scores that

need attention. The symbol “-” in the table means that the

large XLNet model is too large to train on a single 32GB

GPU. Therefore, we do not record their score. Moreover,

the score of large XLNet model decrease significantly

compared with the base XLNet model. The best 𝐹1 score

0.704 is achieved by xlnet-base-cased model training with

four epochs and 16 batch size. Compared with the top 5

teams’ results, 0.704 can also rank 3 rd and better than the

best score 0.693 based on word embedding method.

Table 5. Fine-Tuning Results for Task

A(𝑭𝟏 𝒔𝒄𝒐𝒓𝒆)

Model E=3

bs=64

E=4

bs=64

E=4

bs=32

E=4

bs=16

B-b-u 0.629 0.628 0.660 0.661

B-b-c 0.640 0.647 0.672 0.691

B-l-u 0.640 0.658 0.663 0.697

B-l-c 0.649 0.638 0.693 0.700

X-b-c 0.645 0.679 0.669 0.704

X-l-c - - - 0.565

E: epochs, bs: batch size

5.4. Experiment results for Task B

The result for Task B based on word embedding method

is shown in Table 6. For task B, the LR with bert-large-

uncased got the best 𝐹1 score 0.423. But this score is not

very good compared with the past competition results.

Generally, we could say that in task B, LR ≈ SVM > NB >

RF. Same with result of Task A, there is a problem in the

combination of SVM and XLNet.

Table 6. Word Embedding Results

for Task B(𝑭𝟏 𝒔𝒄𝒐𝒓𝒆)

Model RF NB LR SVM

B-b-u 0.290 0.328 0.402 0.406

B-b-c 0.266 0.307 0.369 0.355

B-l-u 0.280 0.254 0.423 0.395

B-l-c 0.264 0.306 0.392 0.421

X-b-c 0.273 0.315 0.382 0.188

X-l-c 0.234 0.157 0.345 0.188

The result for Task A based on fine-tuning method is

shown in Table 7. The “-” mean parallel training too. From

this table, we know that base XLNet also gets the best 𝐹1

score 0.489 in task B. And the best 𝐹1 score for BERT

model is 0.445. The score of large XLNet model trained

with four epochs and 32 batch size is still much lower than

the base XLNet. But fortunately it is not zero again.

Table 7. Fine-Tuning Results for Task

B(𝑭𝟏 𝒔𝒄𝒐𝒓𝒆)

Model E=3

bs=64

E=4

bs=64

E=4

bs=32

E=4

bs=16

B-b-u 0.360 0.385 0.419 0.426

B-b-c 0.335 0.339 0.338 0.441

B-l-u 0.338 0.349 0.445 0.431

B-l-c 0.392 0.419 0.431 0.410

X-b-c 0.413 0.461 0.489 0.436

X-l-c - - - 0.380

We should also take a closer look at performance on each

category of irony in task B. The top five teams’

performance for each class is shown in Table 8[10]. V, S

and O correspond to verbal irony, situational irony and

other verbal irony. As can be inferred from Table 8, all

teams got a higher score on non-ironic and verbal ironic,

but performs not well on the situational irony and other

verbal irony. The score of other verbal irony is the lowest.

The reason might be that the other category contains

diverse types of irony. More detailed insights should be

provided about this category.

Table 8. 𝑭𝟏 score of each class for Task B[10]

Team Non-

ironic

V S O

UCDCC 0.843 0.697 0.376 0.114

NTUA-

SLP

0.742 0.648 0.460 0.133

THU_NGN 0.704 0.608 0.433 0.233

NLPRL-

IITBHU

0.689 0.636 0.387 0.185

NIHRIO 0.763 0.607 0.317 0.087

Then we look at the systems which get best 𝐹1 score,

including bert-large-uncased + Logistic Regression, best

fine-tuning BERT (bert-large-uncased, 4 epochs, 32 batch

size) and best fine-tuning XLNet (xlnet-base-cased, 4

epochs, 32 batch size). The result of them for each category

is shown in Table 9. The best XLNet outperforms word

embedding system and best BERT by a sizable margin . One

more thing is that BERT and XLNet cannot recognize other

verbal irony neither while the traditional machine learning

models can recognize it even the score is very low.

Compared with the scores of top five teams, the best XLNet

model performs better on the situational irony while in

other categories the performance is not satisfying.

Table 9. 𝑭𝟏 score of best three systems for

each class for Task B

Model Non-

ironic

V S O

B-l-u+LR 0.727 0.478 0.406 0.081

BERT-best 0.665 0.639 0.382 0

XLNet-best 0.771 0.650 0.534 0

6. Conclusion

In this paper, we evaluate the performance of BERT and

XLNet models based on word embedding method and fine-

tuning method on shared task “Irony Detection in English

Tweets”. These two models could get relatively high scores

showing that BERT and XLNet models are capable to

understand the irony to some extent. But they still cannot

defeat the 1st or 2nd team which used LSTMs. This can

probably be explained by that irony is a high-level wisdom

of humankinds and is infrequently used which seldom

appears in the Wikipedia on which these two models were

pretrained. Moreover, the top 1 team handled some strange

words more carefully and used the data augmentation.

Therefore, they got higher score for this specific task. The

base XLNet model got the best score for both tasks showing

that XLNet does outperform BERT in understanding human

language, but the large XLNet models seem to instable

during the training process. One more thing is that fine-

tuning method outperforms the word embedding method in

both tasks. For the future work, a detailed research should

be done on the other verbal irony as well as the data

augmentation. Moreover, some tweets need more

preprocessing like translating the abbreviation or removing

repeated words like “looooooong”.

References
[1] A. Ghosh, G. Li, T. Veale, P. Rosso, E. Shutova, J.

Barnden, and A. Reyes, “Semeval-2015 task 11:
sentiment analysis of figurative language in twitter,”
Proc. of the 9th International Workshop on Semantic
Evaluation, pp.470-478, June. 2015.

[2] G. Lakoff, The contemporary theory of metaphor,
Cambridge University Press. 1993.

[3] A. Ghosh, and T. Veale, “Fracking sarcasm using
neural network,” Proc. of 7th Workshop on
Computational Approaches to Subjectivity, Sentiment
and Social Media Analysis, pp.161-169, June. 2016.

[4] C. Van Hee, E. Lefever, and V. Hoste, “Monday
mornings are my fave:)# not exploring the automatic
recognition of irony in english tweets ,” Proc. of the
26th Int’l Conf. on Computational Linguistic.,
pp.2730-2739, Dec. 2016.

[5] S. Rosenthal, N. Farra, and P. Nakov, “SemEval-2017
task 4: sentiment analysis in twitter,” arXiv preprint
arXiv:1912.00741. 2019.

[6] A. Joshi, P. Bhattacharyya, and M.J. Carman,
“Automatic sarcasm detection: a survey,” ACM
Computing Surveys (CSUR), 50(5), 73 , 2017.

[7] A. Khattri, A. Joshi, P. Bhattacharyya, and M. Carman,
“Your sentiment precedes you: using an author’s
historical tweets to predict sarcasm.” Proc. of the 6th
Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pp.25-30, Sept. 2015.

[8] D.G. Maynard, and M.A. Greenwood, “Who cares
about sarcastic tweets? investigating the impact of
sarcasm on sentiment analysis ,” Proc. of the 9 th Int’l
Conf. on Language Resources and Evaluation
(LREC'14), pp.4238-4243, Mar. 2014.

[9] N. Desai, and A.D. Dave, “Sarcasm detection in hindi
sentences using support vector machine ,”
International Journal, 4(7), 8-15, 2016

[10] C. Van Hee, E. Lefever, and V. Hoste, “Semeval-2018
task 3: irony detection in english tweets ,” Proc. 12th
International Workshop on Semantic Evaluation ,
pp.39-50, June. 2018

[11] A. Ghosh, and T. Veale, “Ironymagnet at semeval-
2018 task 3: a siamese network for irony detection in
social media,” Proc. of the 12th Int’l Workshop on
Semantic Evaluation, pp. 570-575, June. 2018.

[12] C. Wu, F. Wu, S. Wu, J. Liu, Z. Yuan, and Y. Huang,
“Thu_ngn at semeval-2018 task 3: tweet irony
detection with densely connected lstm and multi -task
learning,” Proc. 12th Int’l Workshop on Semantic
Evaluation, pp. 51-56, June, 2018.

[13] C. Baziotis, N. Athanasiou, P. Papalampidi, A.
Kolovou, G. Paraskevopoulos, N. Ellinas, and
Potamianos, “Ntua-slp at semeval-2018 task 3:
tracking ironic tweets using ensembles of word and
character level attentive rnns,” arXiv preprint

arXiv:1804.06659, June. 2018.

[14] O. Rohanian, S. Taslimipoor, R. Evans, and R. Mitkov,
“Wlv at semeval-2018 task 3: dissecting tweets in
search of irony.” Proc. of the 12th Int’l Workshop on
Semantic Evaluation, pp. 553-559, June. 2018.

[15] H. Rangwani, D. Kulshreshtha, and A.K. Singh,
“Nlprl-iitbhu at semeval-2018 task 3: combining
linguistic features and emoji pre-trained cnn for irony
detection in tweets,” Proc. of the 12th Int’l Workshop
on Semantic Evaluation, pp.638-642, June. 2018.

[16] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova,
“Bert: pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[17] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S.R. Bowman, “Glue: a multi-task benchmark and
analysis platform for natural language understanding ,”
arXiv preprint arXiv:1804.07461. 2018.

[18] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang,
“Squad: 100,000+ questions for machine
comprehension of text,” arXiv preprint
arXiv:1606.05250. 2016.

[19] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.
Salakhutdinov, and Q.V. Le, “Xlnet: generalized
autoregressive pretraining for language
understanding,” arXiv preprint arXiv:1906.08237.
2019.

[20] W.N. Francis, and H. Kucera, “Brown corpus manual:
manual of information to accompany a standard
corpus of present-day edited american english for use
with digital computers.” Brown University,
Providence, Rhode Island, USA. 1979.

