
DEIM Forum 2020 H4-5

Hypergraph based Partitioning on a Distributed RDF System

XU MINGQIN†, Hieu Hanh LE††, and Haruo YOKOTA††

† Department of Computer Science, Graduate School of Information Science and Engineering

†† Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552 Japan

E-mail: †{xu,hanhlh}@de.cs.titech.ac.jp, ††yokota@cs.titech.ac.jp

Abstract Due to the flexibility and scalability of RDF (Resource Description Framework) data model, more and

more communities have released their data in RDF format. Growth of RDF data throws a challenge for data

management and query processing in optimized time. Current distributed RDF systems involve large of inter-node

communication. This paper will focus on hypergraph based spanning tree partitioning and distributed processing

system in order to handle large-scale RDF data efficiently. Algorithm for transformation of RDF graph into hy-

pergraph is proposed: all the subjects and objects connected with a particular predicate in the RDF graph resides

under a particular hyper edge. Chunks are generated on the help of the hypergraph spanning trees and distributed

into several nodes, which can decrease the SPARQL query response time. The system performance is evaluated

using the LUBM benchmark.

Key words data structure, graph database, hypergraph, RDF

1 Introduction

The Resource Description Framework (RDF) is widely

used as a versatile data model that provides a simple way

to express facts in the semantic web. It uses triples com-

posed of subjects, predicates and objects to store data [1].

Due to the flexibility and scalability of RDF data models,

more and more communities have released their data in RDF

format. With the rapid growth of RDF data on the Web, se-

mantic Web applications turn to distributed system for help

in pursuing better data management performance. There-

fore, partitioning algorithm over RDF datasets in the dis-

tributed system has become a challenging issue. When ap-

plying partitioning algorithms developed over past decades

to RDF data using well known RDF model such as Directed

Labeled Graphs, Bipartite Graph, the vertices which a triple

depends on may be in different partitions. Such partitioning

on the RDF models induces huge communication overhead

during processing queries.

In this work, a hypergraph based spanning tree partition-

ing in distributed RDF management system is proposed in

order to handle large-scale RDF data efficiently. A hyper-

graph is a generalization of the graph where the edges con-

nect more than two vertices and such edges are called hyper

edges [2]. The system performance is evaluated using the

LUBM benchmark [3].

Following are the main contributions of this paper:

1. A hypergraph RDF model is established. We take ad-

vantage of the hypergraph structure for representation to

better reflect the various characteristics of RDF graphs and

provide a theoretical basis for subsequent data partitioning.

2. Chunks are generated on the help of the hypergraph

spanning trees and distributed into several nodes in order

to ensure that the data load is relatively balanced and the

probability of local joins are increased.

The remainder of this paper is organized as follows. Sec-

tion 2 will give the background of RDF management system

and RDF representing model. Section 3 is going to introduce

the proposed methods. Section 4 is planned to describe and

report the experiment results. Conclusion and future work

will be given in section 5.

2 Background

Early researches in the field of RDF management system

focus on efficient centralized RDF systems. However, cen-

tralized data management does not scale well for complex

queries on the huge amount of RDF data. As a result, dis-

tributed RDF management systems were introduced by par-

titioning RDF data among many computing nodes and evalu-

ating queries in a distributed manner. A SPARQL query [4]

is decomposed into multiple subqueries that are evaluated

by each node independently. Since the data is distributed,

the nodes may need to exchange intermediate results during

query evaluation. Therefore, queries with large intermedi-

ate results incur high communication cost, which is detri-

mental to the query performance [5], [6]. Distributed RDF

systems aim at minimizing the number of decomposed sub-

queries by partitioning the data among workers. In such a

parallel query processing, each node contributes a partial re-

sult of the query; the final query result is the union of all

partial results. The goal is that each node has all the data

it needs to evaluate the entire query and there is no need for

exchanging intermediate results [7]. To achieve this, there

has been a lot of research issues such as query cost optimiza-

tion. In this work, we focus on partitioning method and data

presentation.

In terms of the data model types for representing RDF,

current researches are divided into two groups: traditional

database model and native graph model. the performance

bottleneck of traditional database models is inevitable be-

cause of the extra cost for data model transformation. When

accessing RDF data within a non-graph storage. many use-

ful graph-based operations (e.g., random walk, reachability,

community discovery) on RDF data are not supported. As

for native graph model, it is not easy to execute the query be-

cause predicate represents a link between subject and object.

A resource could be a subject, a predicate, and/or an object

at the same time, which causes inconsistent representations

for vertices and edges. In [8], Jonathan Hayes proposes a

hypergraph representation. By letting a hyper edge be com-

posed of three vertices corresponding to the elements of a

triple, the hypergraph representation can not only support

efficient traversals on the RDF graph, but also overcome the

limitations discussed above [9].

As for partitioning method, it is used to speed up the task

of query execution and RDF data processing as the RDF

data may be very large. Metis is one of famous partitioning

method [14]. It takes advantage of the fact that RDF uses a

graph data model. This enables triples that are close to each

other in the RDF graph to be stored on the same machine.

the so-called k-hop guarantee that for any vertex v assigned

to partition p, all vertices up to k-hops away and the cor-

responding edges are replicated in p. This way any query

within radius k can be executed without communication.

3 Proposed Methodology

where V = {v|v ∈ S ∪O} and E = {e1, e2 . . .} ∃e = {u, v}
where u,v ∈ V . There are two function le and lv. le

is an edge-labeling function. le(S,O) = P and lv is the

node labeling function. lv (vt) = t where t ∈ (S ∪ O) and

S = Subject(URI ∪ BLANKS), P = Predicate(URI),

O = Object(URI ∪ BLANKS ∪ LIT) .

［Definition 2］ Hypergraph: a Hypergraph HG is defined

as a set of vertices V and a set of nets (hyperedges) E

among those vertices, Every net is a subset of vertices.

HG = (V ,E) where node V = {v1,v2 . . .vn} and E =

{e1, e2, . . . , en} where V = {v|v ∈ S ∪ O ∪ P} and each

edge E is a non-empty set of V . The union of V is equal to

E : E = ∪n
i=1V .

［Definition 3］ Predicate based spanning Tree(PT): for a

hypergraph HG = (V,E), one of the PT of the HG is:

PT = (VPT ,EPT) if the following conditions hold: (1)VPT ⊆
V,EPT ⊆ E; (2) There is only one predicate in EPT , but

it contains multiple subjects and objects. (3) ∀E ∈ EPT ,

every v related to a hyperedge E has v ∈ VPT .

［Definition 4］ Hypergraph based Traversal Tree Partition-

ing: for a hypergraph HG = (V,E), suppose P1, P2, . . . , Pk

is the set of predicate spanning tree, which is in the size of

k (1 <= k <= |E|, Pi = (vpi,Epi) , i = 1, 2, . . . , k). If Vp1∪VP2∪
· · ·∪Vpk = V,Ep1∪Ep2∪ . . .∪Epk = E , then P1, P2, . . . , Pk

is the K-way partition of HG [10] .

Figure 1 RDF graph

we use set and map data structure to implement the hy-

pergraph transformation, which java could offer interfaces.

And algorthm1 is used for building the map

3 . 2 RDF Hypergraph Model

We convert RDF graph into a hypergraph by calculating

how many predicates which subjects and objects connected

with. For the RDF hypergraph, all the subjects and objects

connected with a particular predicate in the RDF graph re-

sides under a particular hyper edge. Hypergraph expresses

all the semantics of RDF data. Explicitly expressed seman-

tics can be accessed by traversing the hypergraph. Figure

1 is a simple example of RDF graph, Figure 2 is the picto-

rial representation of data as a hypergraph that is generated

from the Figure 1.

3 . 1 Formal Definition

Before describing the proposal, we briefly discuss formal

definition of the basic terms used in this paper.

［Definition 1］ RDF graph: a RDF graph G = (V ,E)

3 . 3 Spanning Tree Based Chunk Generation

After converting RDF graph to hypergraph, the entire

RDF hypergraph is supposed to be divided into several

chunks for distribution. For the first step, RDF hypergraph

Figure 2 RDF hypergraph

Algorithm 1: Store predicate in a map

Input : Graph containing triples

Output: data: Map storing subjects objects pairs for each

predicate

1 for ∅ map ;

2 for all aj where 0 <= j <= a. length-1 do

3 map → j + 1;

4 end

5 remove dumlicate entries from map;

6 Store subjects and objects pairs for each predicate;

7 for ∅ date ;

8 for all mapi where 0 <= i <= a. length-1 do

9 for all aj where <= j <= a. length-1 do

10 if mapi = aj{predicate} then

11 date[mapi] → [mapi]∪ajobjective∪ajsubjective
12 end

13 j → j + 1

14 end

15 i → i+ 1

16 end

is split into a set of spanning trees, which is regarded as the

initial partitions. In RDF data, the number of predicates

is relatively small. Consequently, predicates are used as the

starting point for the spanning tree partitioning. Each pred-

icate spanning tree contains only the data corresponding to

the predicate. In order to generate spanning tree for one

particular predicate, the algorithm 2 is deployed.

The spanning trees are the disjoint subgraphs of the en-

tire RDF hypergraph. As the relations among each spanning

trees are relatively sparse, the further partitioning is needed.

In the next step, spanning tree whose size is more than chunk

size threshold will be bipartitioned and then clustered to-

gether in order to generate chunks with equal size where

contained vertices are closely related. Hmetis is used which

is an extremely fast hyper graph partitioning algorithm [13].

he weight is redefined for this case. The system will check

Algorithm 2: spanning tree generation

Input : predicate, threshold

1 hyperedgeSet={}, subjectSet={}, objectSet={},
predecessorSet={};

2 subjectSet = findSubfectSetByPredicate (predicate);

3 divide subjectSet into smaller blockSet;

4 parfor each subjectBlock in blockSet do

5 mark−unvisited− to− current− thread(subjectBlock,

visit array);

6 while true do

7 for each unvisited subject in subjectBlock do

8 objectSet=

fjndObjectSetByPredicateAndSubject(predicate,

subject);

9 id = chooseSlave(subject, objectSet.size(),

threshold, predecessorSet);

10 if id= −1 then

11 divide objectSet into k subObjectSet;

12 for each subObjectSet[i] in subObjectSet do

13 place triples <subject, predicate,

subObjectSet[i]> in slave i;

14 end

15 else

16 place triples < subject, predicate,

objectSet > in slave id

17 end

18 for each unvisited object in objectSet do

19 hyperedgeSet =hyperedgeSet∪object
20 end

21 mark-unvisited-to-current-thread(objectSet,

visit array);

22 if hyperedgeSet == 0 then

23 break;

24 end

25 end

26 end

27 predecessorSet. swap(subjectBlock);

28 subjectBlock.swap(hyperedgeSet);

29 hyperedgeSet.clear();

30 repeat

31 if blockSet is empty and exist busy thread(s) then

32 threadid = choose-busy-thread();

33 steal-and-execute-rasks(threadid);

34 end

35 end

the overlap of the hyper edges to identify the weight. For

a spanning tree with hyper edge ei, it has w(ei) to measure

the strength of the cohesion between the vertices vi in ei.

The support of ei is:

S (ei) = |V (ei)|

There are other hyper edges in ei because the vertices in

ei can be connected by the way except hyper edge ei. If

there exist hyper edge X,Y, and there is a relationship r

that X → Y, the confidence of r is :

con f(r) = S(X ∪ Y)/S(X)

If there are k relations in ei, so the mean confidence of ei

is :

con f (ei) =

∑k
j=1 con f (ri)

k

In the traditional definition, mean confidence of the hyper

edge is the weight. In this work, the weight is not only con-

sidered as the cohesion between the vertices vi in ei but also

connection among other partitions. For example, we sup-

pose there is another spanning tree with hyper edge ej , The

weight of ei is affected by ej , if ei overlaps ej .

The weight is defined as:

w (ei) = con f (ei)−
∑t

j=1,j |=i

[
|V (ej) ∩ V (ei)]

|V (ej)|
con f (ej)

]
Hmetis will find the hyper edge with the smallest weight

and truncate it to divide the hypergraph into two parts.

This algorithm is repeated until the final clustering result

is n chunks. All vertices contained in each chunk are closely

linked.

4 Experiment

In this section, we evaluate the performance of our algo-

rithm both in terms of dataset loading time and query pro-

cessing time. We use LUBM benchmark [11]. By leveraging

the data generator UBA (Univ-Bench Artificial data genera-

tor), we generate three data sets that contain OWL files de-

scribing information of 1, 10 and 50 universities respectively.

The three data sets are named LUBM(1, 0), LUBM(10,0),

and LUBM(50, 0). The detail is shown in Table 1.

Algorithm 3: choosing computing nodes

Input : hyperedge, blocksize, threshold, predecessorSet,

overlapping table

1 old val = slave table [hyperedge];

2 if blocksize > threshold then

3 return -1;

4 slaveid = slave table [hyperedge];

5 end

6 if slaveid ! = 0 then

7 return slaveid;

8 else

9 predecessor = getOnePredecessor(hyperedge,

predecessorSet);

10 if predecessor ! = -1 then

11 slaveid = slave table [predecessor];

12 else

13 slaveid = chooseMaximaloverlapping

(overlapping table);

14 end

15 if sync bool compare and swap(slave table

[hyperedge], old val, slaveid) then

16 return slaveid;

17 else

18 return slave table[hyperedge];

19 end

20 end

A prototype system is developed which contains 1 coordi-

nator, 5 computing nodes(workers). In addition, Jena, which

is a java framework, is applied for loading the data sets and

providing logical plan in query processing [12]. We also con-

struct a parallel data processing framework using HadoopDB

(version 0.1.1), a hybrid of MapReduce and DBMS Technolo-

gies [15]. HadoopDB connects multiple single-node database

systems using Hadoop as the task coordinator and network

communication layer. Queries are parallelized across nodes

using the MapReduce framework. We contrast the system

with hypergraph model in proposed partitioning method and

system with RDF native graph model in metis(2-hop) parti-

tioning.

Firstly, we provide experimental study for total prepro-

cessing time which includes data creation time, partitioning

time and loading time. Although proposed method takes

longer time because of the extra cost of hypergraph creation,

it is acceptable because hypergraph only needs to be created

once. Besides, if comparing two methods without consider-

ing the data creation time, the proposal is better in dealing

large amount of data. The Figure 3 shows the statistics.

Secondly, we provide experimental study for query process-

ing time. Due to Hadoop usually has start-up time, only the

time of Map and Reduce phase is measured and the start-

3 . 4 Choosing Computing Nodes for Chunks

After chunk generation, chunk placement algorithm is de-

signed for meaningful distribution in each computing nodes.

From the careful analysis of the SPARQL query patterns, we

observed that the large involvement of s-s, s-o and o-o joins.

Therefore, when distributing the RDF graph, it is necessary

to maintain the above relationships as much as possible. Al-

gorithm 3 is deployed. The system firstly checks the size

of chunk to exclude the computing nodes without enough

space. The predecessor of the chunk is also checked to ex-

clude the computing nodes without predecessor. In addition,

there is a global mapping table that is constantly updated

and maintained to record the distribution of hyper edges on

each computing node.

Table 2 Query Response Time on LUBM(50,0)
Q1(star) high

selectivity
Q2(star) Q3(long circle) Q4(simple circle)

high selectivity
Q5(long chain) Q6(circle+chain) Q7(circle+chain)

time (s) res exe res exe res exe res exe res exe res exe res exe

proposal 0.7 0.075 0.4 0.031 110.3 0.276 224.7 0.452 113.2 2.22 324.7 3.432 672.1 9.54

Metis(2-hop) 0.1 0.067 0.377 0.032 167.16 0.382 219.7 0.392 181.7 4.51 741.2 19.56 989.2 9.156

res: processing time in communication module
exe: execution time in storage module

Table 1 the Detail Information of LUBM

LUBM(1,0) LUBM(5,0) LUBM(10,0)

Total size (MB) 8.6 54.2 110.6

Number of triple 103,397 646,128 1,316,993

Figure 3 Preprocessing Time of the Proposal and Metis(2-hop)

up time is removed in the experiments. Each query result

is divided into two parts: execution time in storage module

and processing time in communication module. In storage

module, Jena executes queries. Intermediate results of each

database system running on each node are sent to communi-

cation module (Hadoop layer). Hadoop layer will execute the

rest of tasks, such as join on intermediate results. All statis-

tics presented in this work are the averages of 5 runs of the

queries. Table 2 shows the query performance over proposed

method and Metis. 7 queries are conducted. Those queries

are classified based on their structures, selectivity and com-

plexity. Q1 and Q2 are simple star queries while Q1 has high

selectivity. Q3 is simple nonselective long circle query. Q4 is

highly selective and composed of simple circle. Q5, Q6 and

Q7 are complex queries with large intermediate results.

5 Conclusions and Future Work

In general, this work used a hypergraph model for RDF

partitioning, which intends to be more concrete than the na-

tive graph model to allow more meaningful partitions. Be-

sides, a partitioning method on the help of the hypergraph

is proposed which is evaluated comparing with Metis.

Specifically, the system first establishes a hypergraph

model of RDF data, and then constructs chunks based on hy-

per edge spanning tree, continuously divides and places the

chunks along the spanning tree. The experimental results on

preprocessing time over LUBM show that proposed system

can handle large-scale RDF data. And the proposal shows

fast partitioning speed and loading speed but suffer in extra

cost of hypergraph creation. Moreover, proposed method is

compared with Metis on query performance, the first obser-

vation is that the query evaluation in database layer changes

negligibly for these two methods. The times spending in

Hadoop layer are far larger than the query evaluation times

in database layer. And proposal shows better performance

on chain queries and complicated queries (especially with cir-

cle joins) and suffer in high selectivity queries. On the other

hand, Metis is better in star queries.

For the proposed system, there is still much room to im-

prove. 1) The join relationship between the entities is given

priority when partitioning data. However, there may exist

relations among predicates. These relations should be taken

into consideration. 2) The system only performs distributed

storage and management on the static data. Dynamic ad-

justment should be considered. 3) Experiments on larger

datasets and larger computing nodes are supposed to be con-

ducted.

References

[1] Resource Description Framework (RDF): Concepts and Ab-

stract Syntax W3C, 2004, https://www.w3.org/TR/rdf-

concepts/

[2] Hypergraph, https://en.wikipedia.org/wiki/Hypergraph

[3] LUBM. http://swat.cse.lehigh.edu/projects/lubm/.

[4] SPARQL Query Language for RDF. https://www.w3.org/TR

/rdf-sparql-query/.

[5] W3C Data Activity Building the Web of Data, 2013,

https://www.w3.org/2013/data/

[6] Billion Triple Challenge.http://challenge.semanticweb.org/.

[7] Z. Ma, M. A. Capretz, and L. Yan. Storing MassiveResource

Description Framework (RDF) data: a Survey. The Knowl-

edge Engineering Review, 31(4):391-413, 2016.

[8] Hayes J. A graph model for RDF [Master’s Thesis]. Depart-

ment of Computer Science, Technische Universitat Darm-

stadt, Germany, August 2004

[9] Wu G, Li JZ, Hu JQ et al. System: A native RDF repos-

itory based on the hypergraph representation for RDF

data model. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 24(4): 652-664 July 2009

[10] Aykanat C, Cambazoglu B B, Ucar B. Multi- level direct k-

way hypergraph partitioning with multiple constraints and

fixed vertices. Journal of Parallel and Distributed Comput-

ing. 68 (5), 2008. 609-625

[11] Y. Guo, Z. Pan, and J. Heflin. LUBM: A bench-

mark for OWL knowledge base systems. Journal of Web

Semantics,3(2-3):158-182, 2005.

[12] Jena. http://jena.sourceforge.net.

[13] Hmetis. http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

[14] George Karypis and V Kumar. Metis-a software package for

partitioning unstructured graphs, meshes, and computing

fill-reducing orderings of sparse matrices-version 5.0. Uni-

versity of Minnesota, 2011.

[15] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-

schatz, and A. Rasin. HadoopDB: An architectural hybrid

of MapReduce and DBMS technologies for analytical work-

loads. Proc. of the VLDB 2009, 2(1):922-C933, 2009.

