
   

DEIM Forum 2020 H7-1 (day2 p64) 

1 

Graph Navigation Query in an Edge Streaming Database 

Tarek Aoukar†   Jun Miyazaki‡ 

Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 

Oookayama, Meguro-ku, Tokyo 152-8550, Japan 

E-mail:  †aoukar@lsc.c.titech.ac.jp,  ‡miyazaki@lsc.c.titech.ac.jp 

Abstract:  In this paper, we present a new solution in graph database systems that takes advantage of two 

different types of graph databases (navigation query oriented, global graph processing oriented) to obtain 

balanced performance on two different workloads simultaneously with low overhead. In recent years, internet 

users have been generating data at a highly accelerating rate, and in various formats, urging the need to develop 

various types of database systems. Traditional relational databases no longer are the most effective solutions 

for all types of data storage and processing, for example: Web graphs, SNS, and Transportation networks data 

are better suited for graph databases due to the nature of the data and processing behavior (n-hop neighbors, 

PageRank, WCC). Using the grid format for a graph as presented in GridGraph and combining it with graph 

edge linkage like Neo4j, our solution can achieve good performance regardless of the workload on it. We show 

some performance evaluation of the proposed system as well as the system architecture. 
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1. Introduction 

In recent years, the Internet users have been generating data at a 

highly accelerated rate, and in various formats, opening the gate to 

various types of databases to be involved as storage and processing 

solutions. Traditional relational databases no longer are the most 

effective solutions for all types of data storage and processing. For 

example, Web graphs, SNS, and transportation networks data are 

better suited for graph databases due to the nature of the data and 

processing behaviour. 

Graph databases have gained a lot of attention lately and can be 

categorized based on their system architecture to: a) distributed 

systems: as a natural solution for the ever growing data size 

distributed systems such as Pregel[1], PowerGraph[2], Chaos[3], 

and b) out-of-core systems such as GraphChi[4], X-Stream[10] and 

others[7,15]. Distributed systems are a natural solution for the ever 

growing data size, and have the ability for very large scale graph 

processing powered by their scale-out architecture. On the other 

hand, out-of-core systems can avoid the difficulties of distributed 

systems such as synchronization, load balancing, and clustering. 

Graph databases can also be categorized based on their focus into 

one of two categories: 1) Navigation query oriented ones such as 

Neo4j[9] and DGraph[19], and 2) Global graph processing (edge 

streaming) oriented ones such as GraphChi[4] & GridGraph[7]. The 

former focuses on navigation queries such as searching n-hop 

neighbors, and aims to obtain high performance by optimizing the 

data structure and data layout used by the data storage and processing 

engine, while the latter focuses on analysis on the graph as a whole 

for running algorithms such as PageRank, WCC, SpMV, etc, by 

optimizing their data structure and data layout for sequential access. 

Neo4j[9] is an open source, fully ACID, transactional property 

graph database where properties are represented as key-value pairs. 

Data is stored on a disk in the form of records with 2-level caching 

to improve performance, on which a record only holds the data to the 

first relationship while in object cache it holds all its relationships 

classified by types. Its performance of navigation queries is multiple 

times higher than that of MySQL even in small datasets. 

In this paper, we propose a system that aims to balance between 

global graph processing and navigation queries by exploiting the 

data structures used by navigation query oriented databases to reduce 

the amount of accessed data, and the data layout from global graph 

processing databases to maximize the sequential access to a hard 

disk. 

The rest of the paper describes some of the existing works that 

inspire our proposed method, followed by the data structures and 

algorithms behind our database processing model and query 

execution. We report experimental results and conclude the paper.  

2. Related Work 

Recently, a number of systems have been proposed for graph 

processing[5,6,13,14,8]. We draw attention to some of the notable 

works. 

2.1. Distributed systems 

Pregel[1], which is a distributed abstraction for graph-based 

computation, follows the vertex centric computation model where 

programs are expressed in iterations of passing messages between 

vertices and synchronizing at superstep intervals. Pregel is a simple 

framework for graph computation that is both scalable and fault 

tolerant hidden behind a simple API. 

PowerGraph[2] uses the Gather, Apply, Scatter (GAS) 

computation model. It focuses to solve the problem of natural graphs 

which follows the highly skewed power-law degree distribution by 

factoring computation over edges instead of vertices, so as to 

increase the parallelism in carried computations. 

TigerGraph[20] is a native graph database heavily optimized and 

designed for massive parallel graph analysis. It contains automatic 

partitioning of graph and a hash index is used to determine which 

server data belong to. TigerGraph equips a query language, called 

GSQL, which is friendly to both bulk-synchronous-programming 

and map-reduce users. 

2.2. Single machine systems 

X-Stream is introduced as a scale-up graph processing system for 

both in memory and out-of-core graphs on a single machine using 

the GAS model. However, it adopts edge centric implementation to 

stream unordered edges, instead of random access with states stored 

in vertices.  

Another notable single machine graph processing system is 

GridGraph[7], which divides graph nodes into 1D partitions and is 

used to build a 2D edge grid in which each cell contains directed 

edges from a source partition to a destination partition. It scales well 

with memory and disk bandwidth and outperforms other systems 
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like X-Stream and GraphChi. 

2.3. Flat datacenter technique 

Chaos[3] exploits the streaming partitions provided by X-

Stream[10] for sequential access and parallelizes it across machines 

in a small cluster based on the observation that storage bandwidth is 

much lower than network bandwidth in a small cluster. In this case, 

the preprocessing of a graph is trivial. It splits graph data such as 

vertices, edges, and any intermediate data, and each data fragment is 

stored to randomly selected storage devices of the cluster, following 

a uniform distribution. It also allows work-stealing for load 

balancing. Due to these features, it scales out from 1 to 32 machines 

only with 1.6X increase in runtime. 

 

3. Architecture of the Proposed System 

In this section, we describe the data structures, data layout, and 

processing model of our system. Our system uses LevelDB[16] as 

underlying key-value storage which has been developed by Google. 

LevelDB uses log structured writing, and provides an easy and 

robust API for fast prototyping. It is also easy to replace with an 

optimized data access layer at later stages of our system. 

3.1. Data Structures 

The candidate data structures we used are similar to ones used in 

Neo4j. The three main data structures are as follows: 1) graph node, 

2) graph edge, and 3) edge linkage.  

The graph node stores a relationship pointer that points to an edge 

of the graph in which the node is either a source or a destination, and 

a property block pointer. The graph edge holds a pointer from a node 

source node to a destination node, as well as a property block pointer. 

The edge linkage contains useful navigation pointers which are used 

as a helper for navigation queries to reduce the amount of streaming 

needed. Figure 1 below illustrates data structures and how they are 

connected.       

 

No record stores its own ID. Instead, the ID is the actual offset of 

the record in the database, and each record holds a validity bit that is 

used for fast record deletion without overwriting the record 

immediately. Property block pointers in each record can be used to 

store 4 bytes of arbitrary data, such as the weight of an edge, if the 

user data is small. 

Records are grouped in disk pages (a byte array container), and 

each record manipulates its own data directly into the associated disk 

page to facilitate easier data retention mechanism alternative to 

detecting record data update and copying data over.  

 

3.2. Data Layout 

A disk page is organized in the same manner as Partition 

Attributes Across (PAX)[17] where fields are grouped together, 

which improves performance in certain operations such as finding 

edges with a certain source or destination in a page due to cache 

access.

 
Figure 1: Data structures interconnections 

As in GridGraph, the nodes of the graph are split into 𝑃 partitions, 

and edges are split into 𝑃 × 𝑃 grid where a cell in position (i,j) holds 

the edges with source nodes in partition i and destination nodes in 

partition j. This is built under the assumption that each partition can 

totally fit into memory with enough free space for auxiliary data. 

However, it is the user's responsibility to find and provide the 

number of partitions, which means that prior knowledge about the 

number of nodes in the graph is required. Otherwise, the user may 

define the number of partitions. However, too small number of 

partitions results in too large partitions which do not fit in memory. 

It also limits the possibility of evolving the graph since adding nodes 

may increase the partition size to the maximum memory size and it 

no longer can fit in memory. Our approach, on the other hand, 

requires the definition of memory limit per partition and dynamically 

creates partitions if needed. Edge grid data is stored in a sequential 

manner according to destination and source partitions allowing to 

sequentially stream all edges with the same destination partition, and 

therefore, allowing immediate update of node values. This can help 

some global graph algorithms to converge faster. 

In a similar fashion to edge data grid, the edge linkage data is also 

stored in the grid format and only loaded when required by graph 

navigation queries to reduce the I/O and memory usage. 

Each cell in the grid can uniquely be identified by the higher 8 

bytes representing 4 bytes for destination and 4 bytes for source.  On 

loading edge cells into memory when required by navigation queries, 

edge cells are split into sequential pages. This allows to load 

uniquely identified edge data pages without streaming the whole 

cells. 

 

3.3. Pre-processing 

The pre-processing stage takes an input graph file in the edge list 

format (source_node destination_node) and converts it by the 

following process: 
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    1. The main thread reads edges sequentially from the file and 

dispatch the edge to a responsible processing thread according to 

source and destination partitions 

    2. Worker threads calculate the cell to which the edge belongs 

and write it to an available disk page. The number of worker threads 

is limited by the multi-threading hardware support. 

In addition, we implement a buffering mechanism to improve 

performance by reducing disk accesses. 

 

3.4. Processing Model 

The processing model is different depending on the types of 

queries. Therefore, we explain how queries are handled for each type 

of the load.  

The overview of our system architecture is shown in Figure 2 below. 

 
Figure 2: System architecture overview 

3.4.1. Global Graph Query 

For global graph algorithms, such as PageRank, WCC, SpMV, 

etc. the Stream-Apply computation model is used. The I/O cost for a 

single iteration is a single sequential read over the edge data, a single 

sequential write and 𝑃2  random reads over the graph nodes data 

(only write modified pages). 

The programming interface is robust and simple as shown in the 

following algorithm. 

 

 

 

 

 

 

Algorithm Global graph algorithm query 

function Execute() 

while(shouldIterate()) 

for each node destination page                              ◄   dp 

for each node source page                                  ◄  sp 

for each edge in cell(dp,sp)  

processEdge(edge, source, 

destination,accumulator) 

for each node in dp 

updateNode(node, accumulator) 

The functions shouldIterate(), processEdge(), and updateNode() 

are defined by a user, while iterating and saving changes are 

controlled by the system. For advanced users, customized 

initialization and finalization functions can be overwritten as well as 

providing a custom accumulator for more complicated processing. 

As an example of global graph algorithms, an implementation for the 

PageRank algorithm is shown below. Note that for simplicity, a 

PageRank value and an out degree value are stored in the node 

property pointer and the edge property pointer, respectively. 

 

Algorithm PageRank algorithm 

function shouldIterate() 

        if (diff / v <= threshold) 

            return false 

        diff = 0 

        return true 

 

function processEdge(edge, src, dst, acc) 

        acc += src.GetProperty() / edge.GetProperty() 

 

function updateNode(node, acc) 

        float new_pr = 1 - d + d * acc 

        diff += node.GetPropertyId() - new_pr 

        node.SetPropertyId(new_pr); 

 

 

3.4.2. Navigation Query 

With graph databases focusing on global graph processing, 

navigation queries have poor performance. They require scanning 

over the whole set of edges multiple times because they cannot 

identify the positions of the required edges. Navigation oriented 

graph databases, on the other hand, store pointers to link edges 

forming a linked list data structure. Our system separates the linkage 

pointers from the edge data and stores them in a cell of the grid 

similar to edge data that allows one-to-one mapping between the two 

cells. During navigation query, this linkage data is loaded into 

memory, and passed to the navigation query engine. Then, the 

navigation query engine uses linkage data to decide which edges 

contribute to the query, and loads their pages accordingly, so that the 

sequential scan problem can be avoided. Moreover, it is also possible 

to load and navigate multiple edge linkage data pages before 

deciding which edges are needed by the query. This approach has 

the advantages of 1) reducing I/O compared to global graph 

processing engines, 2) exploiting sequential access and data locality 

provided by the data layout in grid format. Sequential access is not 

provided by the graph databases for navigation query where edges 

of the same graph node pair may end up scattered across the whole 
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database file requiring to seek back and forth to follow the pointers. 

 

4. Experimental Evaluation 

We evaluated our system to show the viability of its performance 

with real world social graphs on a commodity PC. 

4.1. Datasets 

We chose a common and available dataset, the Twitter-2010[18] 

dataset, which contains over 41.7 million users connected by 1.5 

billion relations with 26.2GB in total. 

4.2. Experiment Setup 

The experiments were conducted on a PC running 64bit Ubuntu 

18.04.3 LTS equipped with an Intel® Core™ i7 CPU running at 

4GHz, 16GB of main memory and 2TB of a HDD (7200 RPM). Note 

that in most of our experiments memory consumption maintained a 

maximum of 6GB. 

4.3. Experiment Results 

4.3.1. Pre-Processing 

For the pre-processing, we have used 6GB of memory, this can be 

manipulated by four parameters: 1) the number of nodes per disk 

page, 2) the number of edges per disk page, 3) the number of node 

pages to cache in memory, and 4) the number of edge pages to cache 

in memory. Table-1 shows the results of the experiment we carried 

along with the chosen parameters. 

 

Nodes/ 

page 

Edges/ 

page 

Node 

page/ 

batch 

Edge 

page/ 

batch 

time(s) 

1048576 32768 60 1750 3665 

1048576 65536 60 3500 3570 

Table 1: pre-processing results 

In the current configuration, we set the node page size to 21MB, 

the edge page size to 29KB, the cache size for node pages to 60, and 

that for edge pages to 7000. It took 48 minutes to pre-process twitter-

2010 dataset of which size is more than 26GB. The result data was 

21GB, which is nearly 20% smaller than the original database. We 

need to optimize the parameters, and evaluate the performance in 

detail. 

4.3.2. PageRank 

PageRank is one of the most well-known and used global graph 

processing algorithms. Our initial experiment with PageRank was 

carried on a copy of the database 2here initial PR values for all nodes 

are set to 1, each node page contained 1048576 nodes, each edge 

page contained 65536 edges. The number of threads changed either 

a single thread or 8 threads. In each run, it took 16 iterations to 

converge the final PR. It took 35469 seconds averaging 2216 

seconds per iteration with a single thread, while resulting in 12320 

seconds averaging 770 seconds per iteration with 8 threads. Those 

results can be further improved by implementing a scheduler to skip 

the converged page. 

 

4.3.3. NodeDegree 

We implemented the NodeDegree calculation using 2 different 

approaches. The first approach calculates the degree of the nodes in 

each partition by parallel iteration over the related source and 

destination pairs, in terms of the edges grid, this implementation 

operates on a fixed cell and parallel compute its edges’ degrees, 

before moving to next cell.         

The second approach calculates the degree of different cells in 

parallel. Both implementations achieved similar performance when 

running with 1- 4 threads. However, with 8, 16 threads, the second 

implementation has achieved better performance, this can be related 

to the fact that the first approach requires thread-safe counting since 

all threads are operating over the same cell, this was implemented 

with atomic integers. The second approach, however, has a benefit 

that each thread operates on a different cell, since it has its own 

counters. 

The following Figure3 shows our experimental results. 

Figure 3: Node Degree results 

4.3.4. N-Hop 

N-Hop query was selected as a representative of navigation 

queries. We run this query while varying n from 1 to 5. We notice 

that the performance improves as the number of threads increases 

until a certain limit after which the improvement becomes small. 

Also, because twitter data is a highly connected graph, the edges 

connecting to new nodes become scattered all over the edges grid 

and covers nearly every cell after a certain number of hops. In our 

experiment, we found that the edges cover over 90% of the cells in 

the third hop (2064187 neighbors), and 100% of cells in the 4th hop 

(24408042 neighbors). The following charts show performance 

when n=4 while changing thread count (Figure 4), as well as on fixed 
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thread count of 8 while changing n (Figure 5). 

 

Figure 4: N-hop, n=4 

Figure 5: N-hop, thread count=8 

5. Conclusion 

      

 In this paper, we proposed a new graph database systems that can 

efficiently process both navigation queries and global graph 

processing. Graph processing has these two main workloads with 

different characteristics. The global graph algorithms require 

sequential access with less cache when dealing with large graphs, 

especially, at early iterations. Our solution exploits the sequential 

access bandwidth in a similar way to a cache-oblivious data 

structures [11, 12]. On the other hand, the graph navigation queries 

cause random access problems. If edge streaming systems like X-

Stream and GridGraph are used for such queries, they require an 

excessive amount of I/O to perform. Therefore, our solution 

implements additional edge pointers which become useful to help 

locating the required edges. 

Balancing both workloads simultaneously can be achieved by 

adapting data structure with edge linkage data similar to Neo4j in a 

data layout that exploits sequential access similar to GridGraph. The 

preliminary experimental results indicated the potential advantages 

of our system. 

In our future work, we plan to optimize the pre-processor along with 

query engines with schedulers, and study the effect of the various 

memory parameters on the system as a whole, followed by 

comparison to other out-of-core and distributed systems along with 

analysis. We also want to implement our navigation query engine 

and compare to Neo4j and possible other out-of-core edge streaming 

systems to measure the balanced performance for two types of graph 

processing. 
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