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Abstract  Knowledge graph embedding aims to project entities and relations into a continuous low-dimensional space. 

Typical structure-based embedding methods, such as TransE, are widely used on knowledge graph completion, which 

concentrate on embeddings with fact triples indicating relations between entities. In fact, such methods only use structural 

features to learn embeddings, but most knowledge graphs provide specific taxonomies for entities, which have not been well 

utilized by existing methods. In this paper, we propose a novel knowledge graph embedding method, which is able to take 

advantages of both fact triples and type information for entities. We assume that if two entities are correlated according to their 

belonging types, embeddings should be closer to each other in the low-dimensional space. In other words, when the categories 

of two entities are similar, they should hold similar relations. Based on this assumption, the embedding of an entity is 

responsible for both modeling the corresponding fact triples and modeling its type information in this model. Type information 

is encoded into a label for each entity, producing type-based label embeddings, which capture type correlations between 

entities. In this way, conventional embedding methods, which solely learn embeddings from fact triples, can be improved by 

reflecting type correlations between entities. 
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1. Introduction 

Knowledge graphs (KG)[1] are directed graphs which 

provide sufficient structured knowledge information,  

consisting of entities as nodes and relations as edges. 

Typically, a KG represents knowledge as triplets i.e., 

(head entity, relation, tail entity), indicating there exists a 

relation between two entities. KGs encode structured 

information of billions of fact triples, however, due to the 

quantities of entities and relations, it is still far from 

completeness. Therefore, knowledge graph completion 

(KGC) is derived to predict new triples according to the 

existing fact triples in KGs. 

Recently, translation-based methods [14] are becoming 

increasingly popular. They embed each object in a KG into 

a continuous low-dimension vector space and view fact 

triples as translations in the embedding space. TransE  [4] 

is a conventional translation-based method, it holds the 

view that translations are natural transformations for 

representing facts in the KG. For a triplet (h,r,t), the 

embedding of the tail entity t should be close to the 

embedding of the head entity h plus some vector that 

depends on the relationship r. However, such methods 

only learn embeddings from topological structure, where 

type information or schema of each entity, supported in 

most of KGs, is not utilized. In Fig. 1 we show the 

belonging types of entity David Fincher  which is sampled 

from Freebase[2], a significant KG maintained by Google.  

For instance, we can extract a triple (Obama, eat, pear) 

from the example ”Obama eats pears”. Since Obama 

belongs to type people and pear belongs to type food , 

other entities like David  and banana  might also also form 

a triple which is (David, eat, banana). This is consistent 

with human cognition. 

 

Figure 1. Freebase triples containing type information: 

Two triples linking a subject (i.e., David Fincher) through   

predicates (i.e., /type/object/type) to objects (i.e., 

/people/person, /film/film_director) . 

 

We believe that such type information can augment KGC 

task during the embedding process , because it introduces 

additional information into entity representations. To 

utilize both kinds of information, we propose a model 

named TransType to learn two representations for entities. 

Structure-based representations capture information in 



 

 

 

Figure 2. Framework of our model  

 

fact triples of KGs, while type-based representations  

capture inner connections among entities . Specifically, 

type information is embedded as an added feature for 

corresponding entities.  Following the idea of translating 

embeddings, we let the loss function include collected 

type information. Finally, structure-based and type-based 

information jointly formulate the final embeddings. Fig. 2 

shows the framework of our model.  Type information is 

added into the embedding process to calculate the final 

loss function. 

The rest of the paper will be organized in two parts. 

Section 2 surveys related work. In Section 3 we show 

construction of type correlation graphs. Then we show the 

model to combine with translating embedding models.  

 

2. Related work 

Wide varieties of embedding methods for KGs have been 

proposed in recent years. The basic idea is to model 

multi-relational data by embedding both the entities and 

relations into a low dimension space. Bordes first 

proposed TransE [4] by embedding relations as the 

translation operation between the entities, which performs 

good in link prediction on very large databases , due to its 

low-dimensional embedding spaces and reduced 

parameters.  

Wang et al. [11] pointed out that TransE embeds entities 

with unique representations, which could cause problems 

when it comes to relations other than one-to-one. Based on 

this, they proposed TransH by projecting entity 

embeddings into specific hyperplane according to 

different relations involved. Both [4] and [11] embed 

entities and relations in the same space.  

Assuming that different relations might focus on distinct 

aspects of the entity, TransR [8] embeds entities and 

relations in different spaces and use a transfer matrix for 

mapping. TranSparse [5] replaces the transfer matrix with 

adaptive sparse matrix based on the number of 

relation-linked entities to deal with the heterogeneity and 

imbalance problems. It also considers the diversity of 

entities and reduces the parameters by using vector-only 

multiplication instead of matrix-included one for 

relation-specific entity embedding.  

Following the ideas of separating embedding space for 

entities and relations, TransAt [9] tried to realize attention 

mechanism in relation-related transformation. Two-stage 

learning is proposed, such that first collecting candidate 

entities from correct categories and then fine-graining the 

difference by attention. However, TransAt uses clustering 

to generate categories instead of the ground truth ones.  

For introducing more information into ent ity 

representations, DKRL [13] first encodes entity 

descriptions by continuous bag-of-words and deep 

convolutional neural models and combines with TransE. 

Based on our observation, all of the former ideas try to 

increase the complexity of embedding spaces for both 

entities and relations over the original TranE method, in 

order to give a better representation of the multi -relational 

data. Inspired by category filtering of TransAt and entity 

description encoding of DKRL, our idea is to include the 

ground truth type information into translating embedding 

models, which have not been utilized in knowledge graph 

completion. Assuming that entities with similar types are 

likely to have similar relations, we propose an additional 

model to embed type correlations into the score function. 

Using the same idea of translating embedding, all of the 

types according to the specific entity are represented as 

added features to better separate the embedding space for 

related entities.  

 

3. Embedding model with type correlations 
In this section, we describe how we generate a type 

correlation graph according to type information in KGs, 

and explain our proposing model.  

To utilize both structure and type information among 

entities, we propose two types of embeddings for entities, 

namely translating embeddings  and type-based 

embeddings. Translating embeddings are suitable for 

capturing topological information in fact triples of KGs, 

while type-based representations are suitable for capturing 

category information in entity taxonomies. These two 

embeddings jointly produce representations for entities. 

3.1 Problem formulation 

We first introduce the notations used in this paper. A 

knowledge graph is defined as 𝐺 = (𝐸, 𝑅, 𝑇), where 𝐸 is 

an entity set, 𝑅 is a relation set and 𝑇 is a triple set. 

Given a triple (ℎ, 𝑟, 𝑡)ϵ𝑇, where ℎ, 𝑡ϵ𝐸 stand for head and 

tail entities, respectively, and 𝑟ϵ𝑅 stands for relations. 

𝑇′, 𝑤ℎ𝑒𝑟𝑒 𝑇′ ⊂  𝐸 × 𝑅 × 𝐸 𝑎𝑛𝑑 𝑇′ ∩ 𝑇 =  ∅, denotes missing 

but valid triples in the triple set, and 𝑇̃ denotes triples 



 

 

 

Figure 3. Type correlation graph construction 

 

which are randomly selected from 𝑇.  

Translating embeddings: h and t are translating 

embeddings for head and tail entities. This kind of 

embeddings is the same as those learned from existing 

translation-based models such as TransE. 

Type-based embeddings: 𝒉𝒕𝒚𝒑𝒆 and  𝒕𝒕𝒚𝒑𝒆 are type-based 

embeddings for head and tail  entities which are built from 

entity taxonomies. We calculate type-based correlation 

score 𝑐ℎ𝑡  and supply it into embedding process to 

construct type-based embeddings. 

3.2 Type correlation graph construction 

To capture the inner category correlation between types, 

we extract type information from the knowledge base or 

feature type hierarchy, and construct a type correlation 

graph to help evaluate type correlation between entities , 

and produce type-based correlation vectors. In this graph, 

each node represents a type name, and the weight of each 

link represents the correlation score between two nodes.  

The process of type correlation graph construction is 

described in Figure 3. Feature type taxonomy lists a set of 

type name which is extracted from FIGER dataset [7], 

which has one-to-many mappings with Freebase taxonomy. 

Type-entity facts are extracted from Freebase (triplets 

with ”type.instance” as predicate). In the type correlat ion 

graph, the blue line indicates the weight between two 

nodes(types), indicating correlation score between two 

corresponding types. . Firstly, we map feature type 

taxonomy to type-entity facts, and generate feature 

type-entity facts. Then we generate the type correlation 

graph according to shared entit ies in the feature 

type-entity facts. 

We utilize entity-type facts in the knowledge base to 

measure type correlation. According to Ren et al. [10], the 

correlation score between types is proportional to the 

number of entities they share in the knowledge base.  The 

correlation score is defined as follows:  

𝑠𝑘𝑘′ =(|𝜀𝑘 ∩ 𝜀𝑘′|/|𝜀𝑘|+|𝜀𝑘|/|𝜀𝑘′|)/2 (1) 

𝜀𝑘 = {𝑒 |(𝑒, 𝑘) ∈ 𝜑𝐾𝐵}  (2) 

where 𝜀𝑘 denotes the set of entities assigned with type 𝑘 

in 𝜑𝐾𝐵, and |𝜀𝑘| denotes the cardinality of set 𝜀𝑘. 

Figure 4 shows the visualization of type correlation 

graph. The source of feature type taxonomy is extracted 

from FIGER dataset[7], and the type-entity facts are 

extracted from Freebase. Each node represents a type, and 

the distance between two nodes is proportional to their 

corresponding correlation score. Also, the size of each 

node is proportional to the number of correlat ing types it 

has.  

With the help of a type correlation graph, we can measure 

the inner connection between entities in taxonomies, and 

thus obtain entity type embedding.  

3.3 Methodology 

In this section, we present our proposing model. We 

assume that if two entities are correlat ing according to 

their belonging types, embeddings should be closer to 

each other in the low-dimensional space. To implement 

this idea, we first obtain type-based correlation vectors 

based on the type correlation graph, then propose a  

general approach utilizing correlation vectors to do entity



 

 

 

Figure 5. Type-based correlation  vector 𝒄𝒉𝒕 

 

 

Figure 4. Visualization of type correlation graph 

 

type embedding, and finally modify the margin-based loss 

function  in TransE, to let its margin parameter include 

type information.  

Type-based correlation vectors. We first define  𝒄𝒉𝒕 as 

the type-based correlation vector between entity h and t: 

𝒄𝒉𝒕 = 𝛼 ∙ 𝑐𝑛𝑜𝑡𝑎𝑏𝑙𝑒 + (1 − 𝛼) 𝑐𝑜𝑡ℎ𝑒𝑟,  (3) 

where 𝑐𝑛𝑜𝑡𝑎𝑏𝑙𝑒  denotes the correlation score between  

notable types which are obtained from Freebase taxonomy  

(triplets with “notable_for” as predicate) [ ]. In Freebase, 

certain types are notable because they hold a large 

number of entities, or they might link to many other types. 

FB defines that each entity has only one notable type.  

𝑐𝑜𝑡ℎ𝑒𝑟  denotes the correlation score between types which 

are obtained from the feature type set, 0 < 𝛼 < 1 is a 

parameter that balances the importance of these two kinds 

of types. 

Figure 5 shows the process of generating type-based 

correlation vector 𝒄𝒉𝒕. Each element in the type labels 

indicates whether or not this entity belongs to the 

corresponding type. The first element (type1) in the label 

denotes the notable type. Firstly we generate type labels 

for entities according to feature type-entity facts. Each 

label is a vector with 100 elements, describing each 

entity’s belonging types. To obtain type-based correlation 

vector between entity  h and t, we refer to type correlation 

graph which is described in Section 3.2, using the type 

correlation score between two vectors. Types have 

correlation scores with each other according to the type 

correlation graph. In the final correlation vector, each 

element is the average of the corresponding type 

correlation scores. 

Entity type embedding. After obtaining type-based 

correlation vectors 𝒄𝒉𝒕 , we formulate entity type 

embeddings with the following loss function: 

𝐿𝑡𝑦𝑝𝑒 = ∑ ∑ max ((𝛾 + 𝑑(ℎ𝑡𝑦𝑝𝑒 + 𝒄𝒉𝒕, 𝑡𝑡𝑦𝑝𝑒) −(ℎ′,𝑡′)∈𝑁(ℎ,𝑡)∈𝑇

𝑑 (ℎ𝑡𝑦𝑝𝑒
′ + 𝒄

𝒉𝒕′
, 𝑡𝑡𝑦𝑝𝑒

′ )) ,  0)   (4) 

where 𝑑(∙) denotes dissimilarity function, which can be 

either the L1 or L2 distance, 𝛾 is a margin parameter, 

and 𝑁 is the set of non-relevant entity pairs such that 

there is no relation between the two entities.  𝑁  is 

constructed as follows: For each triple in the training 

triple set, replace either the head or tail entity by a 

random non-relevant entity. 

In the loss function of (4), we follow the idea of 

structure-based embedding in TransE, and add type 

information to the embeddings process . Instead of only 

relying on topological structure, we introduce additional 

information into KGC. We view ( ℎ𝑡𝑦𝑝𝑒 , 𝑐ℎ𝑡 , 𝑡𝑡𝑦𝑝𝑒 ) as 

triplets, and the loss function (4) favors lower values for 



 

 

the training set than for non-relevant entity pair set, and 

thus obtain the final entity type embedding to augment the 

final loss function. 

Type-based margin loss function. In TransE, if triple 

(ℎ, 𝑟, 𝑡) holds, then the embedding of 𝑡 should be close 

to ℎ plus vector 𝑟. The loss function favors lower 

values of the energy for training triplets (ℎ, 𝑟, 𝑡)  than 

for negatively sampled triplets (ℎ′, 𝑟, 𝑡′) . Similar to 

TransE, if triple  (ℎ, 𝑟, 𝑡) holds, then the type embedding 

of 𝑡 should be close to ℎ plus vector 𝑟. To utilize 

both structure and type information, we propose a 

type-based margin loss function:  

𝐿 = ∑ ∑
max (𝛾𝑡𝑦𝑝𝑒 + 𝑑(ℎ + 𝑟, 𝑡)

−𝑑(ℎ̃ + 𝑟, 𝑡̃),  0)(ℎ̃,𝑟, 𝑡̃)∈𝑇(ℎ,𝑟,𝑡)∈𝑇       (5) 

where (ℎ̃, 𝑟, 𝑡̃ ) is either the head or tail is replaced by a 

random entity, and  

𝛾𝑡𝑦𝑝𝑒 = 𝑑(𝑡𝑡𝑦𝑝𝑒 , ℎ𝑡𝑦𝑝𝑒) − 𝑑(𝑡̃𝑡𝑦𝑝𝑒  , ℎ̃𝑡𝑦𝑝𝑒)  (6) 

 

Algorithm 1: Learning model 

Input: Training set S = {(ℎ, 𝑟, 𝑡)}, entities and rel. sets E 

and R, embeddings dimension K. 

Output: Embeddings for entities and relations 

1 initialize 𝒓 ←uniform(−
6

√𝑘
,

6

√𝑘
) for each relation 𝑟 ∈ 𝑅 

2    𝒓 ← 𝒓/||𝒓|| for each r ∈ R 

3         𝒆 ←  uniform (−
6

√𝑘
,

6

√𝑘
) for each entity 𝑒 ∈ 𝐸 

4 loop  

5   𝒆 ← 𝒆/||𝒆|| for each entity 𝑒 ∈ 𝐸 

6   𝑆𝑏𝑎𝑡𝑐ℎ ←sample(S, b) //sample a minibatch of size b 

7   𝑇𝑏𝑎𝑡𝑐ℎ ← ∅ //initialize the set of pairs of triplets  

8   for (ℎ, 𝑟, 𝑡) ∈  𝑆𝑏𝑎𝑡𝑐ℎ do  

9  (ℎ̃,  𝑟, 𝑡̃)←sample(𝑆(ℎ,𝑟,𝑡) )  

10  𝑇𝑏𝑎𝑡𝑐ℎ ← 𝑇𝑏𝑎𝑡𝑐ℎ ∪{(ℎ, 𝑟, 𝑡), (ℎ̃,  𝑟, 𝑡̃)} 

11 end for 

12 Update embeddings w.r.t.  

∑ 𝛻 (𝛾𝑡𝑦𝑝𝑒 + 𝑑(ℎ + 𝑟, 𝑡) − 𝑑(ℎ̃ + 𝑟, 𝑡̃)) 

13 end loop 

 

 

𝛾𝑡𝑦𝑝𝑒  can be considered as the difference of  type 

dissimilarity between pairs (ℎ, 𝑟, 𝑡)  and (ℎ̃, 𝑟, 𝑡̃) . For 

example, for triplets (ℎ, 𝑟, 𝑡) and (ℎ, 𝑟, 𝑡̃), if entities t and 

𝑡̃ share similar types, 𝛾𝑡𝑦𝑝𝑒 will become smaller, so t and 

𝑡̃  will both embed closer to h and r according to the loss 

function. To avoid overfitting, changes of 𝛾𝑡𝑦𝑝𝑒  are 

limited to a small scale, and let translating embeddings 

make the major influence. Instead of the predefined 

hyper-parameter  𝛾 , the type-based margin parameter 

𝛾𝑡𝑦𝑝𝑒 adopts to different circumstances and makes 

embeddings more precise.  The detailed learning 

procedure is described in Algorithm 1. 

 

4. Experiment 

4.1 Datasets  

 We adopt FB15k [4], a public knowledge graph dataset 

extracted from Freebase [2] corpus, to evaluate our 

proposed model on knowledge graph completion. Freebase 

is a large-scale online collection of structured data 

harvested from varieties of sources, aiming to allow 

people and machines to access common information more 

effectively. Table 1 lists the statistics of FB15k dataset.  

 

Table 1. Statistics of FB15k 

Dataset |Rel| |Ent| #Train #Valid #Test 

FB15k 1,345 14,951 483,142 50,000 59,071 

 

Table 2. Statics of feature type-entity facts for FB15k 

|Type| 1 2 3 4 

|Entity| 1,683 3,945 4,359 2,071 

|Type| 5 6 7 8 

|Entity| 1,844 985 62 2 

 

 

Figure 6. Histogram of feature type-entity facts 



 

 

Table 3. Experimental results of Knowledge graph completion  

 

For feature type extraction, we use the FIGER [7] dataset, 

which contains 128 entity types and 2 -level hierarchy. In 

FIGER, some types are defined too general, and have 

correlation with almost all the other types, and thus we 

view such types as noisy ones. To ensure the efficiency of 

our type embedding, as well as in accordance with entity 

embeddings, we eliminate such noisy types in FIGER and 

extract 100 types as our feature type set. Table 4 shows 

our cleaned feature type set, where each bold-tag is a 

rough summary of each box. The box at the bottom right 

corner contains mixed tags that are hard to be categorized.  

Utilizing FIGER, we obtain feature entity -type facts for 

FB15k. We show the statistics of feature type-entity facts 

of FB15k in Table 2 and Figure 6. The odd-numbered lines 

and even-numbered lines, respectively, indicate the 

number of belonging types and the amount of entities, 

respectively. Figure 6 is a histogram corresponding with 

Table 2. Over half of the entities have two or three types, 

and the majority of entities has less than six types.  

 

4.2 Settings 

For both entity embeddings and entity type embeddings, 

we use the same parameter settings. The embedding size n 

is 100, the margin size 𝛾 is 1, the learning rate is 0.001, 

and the batch size is 100. We adopt tanh as activation 

function, and L2 distance as dissimilarity function . 

Training epoch is 1000.  

During learning, embeddings for entities and relations 

are initialized following the random procedure proposed 

by TransE. In each epoch, a small set of triples is sampled 

from the training set. Since sampling matters during   

learning [6][12], we use sampling method called “bern”[11] 

to sample batches of data and SGD [3] to optimize our loss 

function. 

 

4.3 Knowledge graph completion 

The task of knowledge graph completion is to find the 

missing h or t for a correct triplet (h, r, t). It emphasizes 

the rank of right object instead of obtaining the best one 

object. 

Evaluation protocol. The evaluation of knowledge graph 

completion contains two metrics: (1) The average rank of 

correct entities (Mean Rank) (2)  The proportion of correct 

entities ranked in top 10 (Hits@10).  

In Mean Rank, the rank of the correct entity is recorded. 

While for Hits@10, if the correct entity is ranked in top 10, 

a hit is counted. We split each evaluation into two parts: 

head entity completion task and tail entity completion task. 

The final result is calculated by the  average result of two 

tasks. 

Although we want to predict new triples in KGs, some 

triples existing in training and validation set might 

become invalid in the test set. Such triples are supposed to 

be the ground truth in  the test set rather than being newly 

predicted. To avoid this issue, from the list of invalid 

triples we remove all the triples which appear either in the 

training, valid or test set , so as to ensure all the newly 

predicted triples are not in these three sets. This 

evaluation setting is denoted as “Filter” and the original 

setting is denoted as “Raw.” 

Results and discussion. We show our experimental results 

in Table 3. For baseline models, TransE is a conventional 

translation-based method which raises the view that 

translations are natural transformations for representing 

facts in the KG, adopting energy function E(h, r, t)= ||h + 

r − t||  to score each triple. TransH [11] and TransR [8]  

extend TransE in the way that TransH projects entity 

embeddings into specific hyperplanes according to 

different relations involved; TransR embeds entities and 

relations in different spaces and use a transfer matrix for 

mapping. DKRL [13] introduces neural networks into 

translation-based methods, reflecting entity descriptions 

into embeddings by using a CNN to encode text 

information. 

Metric Mean Rank  Hits@10  

Raw Filter Raw Filter 

TransE 243 125 34.9 47.1 

TransH 212 87 45.7 64.4 

TransR 226 77 48.2 68.7  

DKRL(CNN)+TransE 181  91 49.6 67.4 

TransType 190 100 50.0  66.9 



 

 

Table 4. Feature type set: It contains a number of 100 types, we separate them into 7 main categories(i.e., person, 

organization, location, building, art, event, product). Types that are hard to be categorized are located at the bottom right 

corner.

 

Our method has an overall improvement over TransE, 

especially for Hits@10, but does not yield all the other 

methods. It implies that type information, which has been 

successfully added into embedding process, could provide 

a good supplement for translation-based method. 

TransType may not have a large improvement over other 

translation-based methods, because structured-based 

representations can already handle this task. However, 

instead of solely relying on topological features among 

entities and relations,  our TransType introduces entity 

taxonomies into embeddings to help entity representations 

contain more aspects of information. Especially in the 

situation that certain entities are newly added to the KGs, 

existing models based on translation-based methods 

cannot predict triples for such entities, because current 

triples in the KGs do not contain new entities. Lacking  

topological information would limit translation -based 

models to form representations. Nevertheless, TransType 

could handle this situation because our model refers entity 

taxonomies to the embedding process, representations for 

new unknown entities can be generated if their type 

information is available. 

 

5. Conclusion and future work 

In this paper, we propose the TransType model for 

knowledge graph completion. The idea of conventional 

translation-based embedding methods for knowledge 

graph completion is to embed each object in a KG into a 

continuous low-dimension vector space and view fact 

triples as translations in the embedding space. We find 

that previous methods only learn representations from 

topological features in the low-dimension space, ignoring 

inner type correlation between entities. Therefore we 

propose a model named TransType, which utilizes type 

information in translating embeddings for knowledge 

graph completion. We use structured-based and type-based 

embeddings to jointly generate embeddings for entities. 

Structured-based embeddings follow the idea of 

conventional translation-based model TransE, while 

type-based embeddings are obtained according to type 

correlation between entities. Our experimental results 
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/disease 

/astral_body 

/chemistry 

/broadcast/tv_channel 

/law 

/biology 

/transit 

/time 

/finance/stock_exchange 

/god 

/computer/programming_la

nguage 

/computer/algorithm 

Event 

/event 

/event/sports_event 

/event/natural_disaster  

/event/attack 

/event/election 

/event/protest  



 

 

prove that TransType indeed has a reinforcement for   

translation-based methods, and prove its capability of   

generating embeddings from type information.  

In the future, we will explore the following aspects: (1) 

Our feature type set contains only 100 types, while the 

Freebase taxonomy contains thousands of types. If we 

could filter the original taxonomies properly, richer type 

information would be added to entity representations. (2) 

Type hierarchy provides inner connection between types, 

thus we can dig into this hierarchical structure to further 

exploit type correlation. (3) We prove the effectiveness of 

applying type information into entity embeddings only 

with TransE. It is possible to extend our model to other 

translation-based models such as TransH and TransR. We 

will investigate more sophisticated models for the above 

purpose in the future.  
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