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あらまし In this work, we present a novel query paradigm by integrating point query and range query for searching

road network trajectory data. Point query asks for trajectories satisfying the spatial relationship to a set of points,

while range query searches trajectories passing a given spatial region R. To our best knowledge, this is the first work

to address an integrated query combining point query and range query over trajectories. However, such a complex

query paradigm might cause prohibitive query processing time overhead, and even worse performances on practical

applications such as detour recommendation and top-k diversified trajectory search. Thus we treat the trajectories

as strings and apply an index, Nested Trie, to address the efficiency issue. We equip the Nested Trie with spatial

partition information to allow it to process range queries. Furthermore, we develop matrix factorization techniques

disclosing the geographical transition patterns to efficiently search for top-k diversified trajectories on the index.

Such techniques are helpful for applications such as trip planning and route explorations.

キーワード Trajectory search, top-k diversified search

1 Introduction

The prevalence of GPS devices has generated massive tra-

jectories in various domains. Particularly, the trajectories

shared for entertainment purposes are commercially benefi-

cial to the applications such as sightseeing and route plan-

ning. As many social networking sites such as Twitter, Face-

book and Foursquare begin to support trajectory sharing ser-

vice, how to retrieve and display valuable answer sets from

large amount of trajectories has become an essential prob-

lem. According to [19], the motivation for trajectory search

is to utilize the pleasant experience obtained from previous

visitors. The historical trajectories might be spent a lot of

time on collecting spot information from multiple sources by

the previous visitors thus being well-planned. Such carefully

planned trajectories might also include some splendid “an-

aba” spots that the map-based navigations system such as

Google Map cannot provide. Moreover, the historical trajec-

tories may have avoided some unpleasant roads (e.g., with

poor public security) although these roads are in the short-

est path.

Existing query types for trajectory search include point

query, range query and trajectory query [30]. Point query

asks for trajectories which satisfy the spatial relationship

to a set of points. Range query asks trajectories passing a

given spatial region R. Trajectory query asks for similar tra-

jectories according to some pre-defined distance-based simi-

larity metrics. However, existing systems can only support

processing a single type of query at once while we want to

handle a trajectory search query consisting of points, ranges

and (partial) trajectories in an integrated way. There are

a lot of benefits from the proposed integrated query mech-

anism. First, point query can describe the exact locations

that the user want to visit. Second, range query can cover

places those are not single point locations but large areas

containing several spatial objects. Also, for users unfamiliar

with a new city, such range query provide an exploratory

method to search when they cannot specify exact point loca-

tions. Third, partial trajectory query can describe the exact

route (e.g., shopping arcade, seaside) the user want to pass

through. In our settings, a point query selects a/multiple

point(s) of interest (POI), a range query selects a/multiple

region(s) in rectangular shapes and a trajectory query selects

a/multiple path(s) beginning with a POI(s).

［Example 1］ In Fig. 1, a user wants to search for trajecto-

ries passing p1, p2, p3 and also passing the rectangular region

R1. This user selects three points p1, p2, p3 as a point query

and one region R1 as the range query. The point query and

range query are issued in an integrated way. The system pro-

cesses the integrated query and returns T1, T2 and T3 that

satisfy all the query constraints.

Search efficiency problem emerges in case of a large amount

of trajectories being given. Existing works [2,5,17,21,25] for

trajectory search rely too much on R-tree [3], which stores all

points from the raw trajectories thus consuming huge space

and incurring ineffective pruning performance. Learning a

lesson from R-tree, we have to consider the other data struc-



Figure 1 An Example of Map-matched Trajectories

tures for our integrated query processing. Inspired by the

map-matching techniques that convert the raw trajectory

into a sequence of road edges, we apply string indexing tech-

niques [7] on the map-matched trajectories to address the

above efficiency and space issues. Although several recent

studies [9, 12, 22] have shown that such lightweight repre-

sentations can improve query processing speed and easier for

compression, none of them considers processing an integrated

query rather than a single-type query.

Moreover, top-k trajectory diversification also has been a

problem for search applications because displaying a large

answer set containing similar trajectories just messes up

the interface and confuses the users. Although a lot of ef-

forts [4,5,14,28] have been conducted on this topic, our work

is the first one to take use the map-matched trajectories and

apply matrix factorization techniques on the top-k trajectory

diversification problem. Matrix factorization can show tran-

sition patterns between different spatial areas and is used to

rank the retrieved trajectories according to how likely the

user will pass through along them. We take use of pub-

lic available POI visit datasets from Foursquare and Flickr

as training sets. Such novel techniques might open another

direction to exploit such POI visit datasets on search appli-

cations.

To our best knowledge, our work is the first one to focus

on an integrated query paradigm processing trajectory search

on map-matched trajectories. We also introduce a novel way

utilized matrix factorization to return top-k diversified an-

swers.

Our main contributions are summarized as follows.

• We propose an integrated query paradigm for trajectory

search (Section 2).

• We apply a string index for the map-matched trajectory

search (Section 3).

• We develop matrix factorization techniques for top-k tra-

jectory diversification tasks (Section 4).

2 PRELIMINARIES

In this section, we introduce the basic data model and

query model used in this paper. Then, we provide an

overview of the integrated query processing system.

2. 1 Data Model

［Definition 1］（GPS points） A GPS point x is a triplet

consists of ⟨x.lat, x.lng, x.time ⟩, which represents the lat-

itude coordinates, longitude coordinates and time stamp re-

spectively.

［Definition 2］（Raw GPS Trajectory） A GPS trajectory

is a list of time-ordered GPS points in the form of

{x1, x2, · · · , xn}, where each xi is a GPS point.

［Definition 3］（Road Network） A road network is a graph

G = (V,E), where V represents the set of vertices of in-

tersections and E represents the set of road segments. For

example, in Fig. 1, V includes all the intersections showed as

black dots and p1, p2, p3. E includes all the road segments

as { e1, e2, · · · , e15 }.
［Definition 4］（POI） A POI is a special intersection on the

road network. It usually represents a named location such

as a sightseeing spot, a shopping mall, a restaurant, etc. For

example, in Fig. 1, there are three POIs p1, p2, p3 on the road

network.

［Definition 5］（Map-matched Trajectory） A raw GPS tra-

jectory can be converted as a sequence of road segments af-

ter being mapped on to their corresponding road network.

Fig. 1 shows an example that T1 can be converted into

e1 → e2 → e3.

［Definition 6］（Map-matched Trajectory with POIs） A raw

GPS trajectory can be converted as a sequence consisting of

both road segments and POIs according to the road net-

work. By simply inserting the POIs appearing on the road

network, such trajectories becomes Map-matched Trajectory

with POIs. Fig. 1 shows an example that T1 can be converted

into p1 → e1 → e2 → e5 → p2 → e9 → p3.

2. 2 Query Model

［Definition 7］（Point Query） Given a list of points rep-

resenting POIs must be traversed P = pi, pj , · · · , pk and

a map-matched trajectory dataset TR = T1, T2, · · ·Tn, we

want to find all sub-trajectories of Ti, where Ti passed all

the points in P with the given order.

［Definition 8］（Range Query） Given a list of rectangu-

lar regions representing regions must be traversed R =

ri, rj , · · · , rk and a map-matched trajectory dataset TR =

T1, T2, · · ·Tn, we want to find all sub-trajectories of Ti, where

Ti passed all the regions in R with the given order.

［Definition 9］（Trajectory Query） Given a list of edges



Figure 2 Overview of the Process

Figure 3 Processing Trajectories into Strings

starting with a POI must be traversed J = p0, ei, ej , · · · , ek
and a map-matched trajectory dataset TR = T1, T2, · · ·Tn,

we want to find all sub-trajectories of Ti, where Ti passed all

the road segments in J with the given order.

［Definition 10］（Integrated Query） Given a list of points,

rectangular regions and road segments must be traversed

Q = {P,R, J } and a map-matched trajectory dataset TR =

T1, T2, · · ·Tn, we want to find all sub-trajectories of Ti, where

Ti satisfied all the query constraints in Q.

2. 3 System Overview

Fig. 2 shows an overview of the whole system.

• We first process the Raw GPS trajectories with map-

matching techniques. We record the generated sequences

as strings for post processing usage. Then we build a

string index, Nested Trie [7], according to the string

records, and attach spatial partition information on it.

• The constructed index will receive the integrated query

consists of point query, range query and trajectory query.

Efficient query processing algorithms will work out and

generate a candidate answer set.

• The candidate answer set will be ranked with efficient

pruning algorithms and a well top-k diversified set will

be returned eventually.

3 Indexing

In this section, we show how we apply the string index-

ing techniques on trajectories search problems. Before that,

we show the detailed processing steps that map-match a raw

trajectory into a sequence consisting of edges and POIs in

Section 3. 1. A flowchart of the steps is shown in Fig. 3.

3. 1 Processing Trajectories

We have three steps for processing the trajectories.

（ 1） Step 1: Map-Matching. In this step, our system

collects all the raw trajectories and convert them into

sequences of edges according to the corresponding road

network. Each edge is represented by a unique integer

ID. The map-matching approach [16] is adopted in this

step.

（ 2） Step 2: Inserting POIs. The POI information is ex-

tracted from OpenStreetMap. Each POI is represented

by a unique integer ID that is not overlapped with edge

IDs. If the POI locations appear on the edge accord-

ing to the road network, we insert such POIs into the

edge sequence according to the visited order in the raw

trajectories.

（ 3） Step 3: Representing as Strings. We record

each sequence consisting of edge IDs and POI IDs as

strings for the index construction latter. We also gen-

erate all the suffix strings from the gap of POI posi-

tion in order to efficient search from the midterm POI

position appearing in the trajectories. E.g., we record

p2 → e3 → p3 which is a suffix of the original sequence

p1 → e1 → e2 → p2 → e3 → p3 in Fig.3.

3. 2 Nested Trie Construction

After map-matching trajectories with POIs, we collect

strings that consist of two different types, edges and POIs.

Inspired by the string indexing techniques Nested Trie pro-

posed in our previous work [7] that also can process subse-

quent queries on two types of string characters, we apply such

techniques to the integrated query processing of trajectory

search.

Recall that Nested Trie consists of outer trie that indexes

initial characters and inner trie that indexes non-initial char-

acters. Hence we apply outer trie to index POIs and inner

trie to index edges instead. The benefit is that Nested Trie

provides efficient search performance for the queries that only

traverse the outer trie. This corresponds the point query

part in the trajectory search. If we want to additionally do

a range query search, we only need to traverse a small part



Figure 4 Build Nested Trie for Trajectories

of inner trie after the outer trie is traversed.

The construction of the Nested Trie is to only insert all the

strings generated in Section 3. 1. More details can be found

in [7].

Table 1 Example dataset TR.

TrajID Traj String

T1 p1 → e1 → e2 → e5 → p2 → e9 → p3

T2 p1 → e1 → e4 → p2 → e9 → p3

T3 p1 → e7 → e8 → p2 → e9 → p3

T4 p1 → e7 → e8 → p2 → e12 → e15 → e13 → p3

T5 p1 → e10 → e11 → p2 → e9 → p3

An example trajectory set in Fig. 1 is given in Table 1 and

the corresponding nested trie is shown in Fig. 4. The yellow

lines represents the shortcuts connecting the outer trie.

3. 3 Attach Spatial Partition Information

To support efficient search on range queries, we borrow the

idea from the work [6] which attach spatial partition infor-

mation on the node of Nested Trie. The experimental results

in [6] show that a quadtree partition with an associated bit

array on the trie node has effective pruning power on spatial

range queries. In this work, we also adopt quadtree parti-

tion also it is also possible to replace it with R-tree or grid

partitions.

3. 4 Searching Algorithm

Below we show the searching algorithm for processing an

integrated query that consists of point query and range query

in Algorithm 1. As the trajectory query processing is similar

with point query, we do not show it for saving spaces.

Algorithm 1: ProcessIntegratedQuery (Q, NT)

Input : Q is the integrated query consisting of points

Q.points and regions Q.rng, NT is a nested trie

built on TR.

Output : {Ti }, such that Ti ∈ TR and satisfy all the

constraints in Q.

1 A← { the root of TR} ; /* node set */

2 b← InitRegionStatus(Q.rng) ; /* bit array */

3 foreach pointi in Q.points do

4 A′ ← ∅;
5 foreach n ∈ A do

6 if n is an outer node AND n has a child n’ through

outer edge pointi then

7 A′ ← A′ ∪ {n′ } ; /* match pi */

8 continue;

9 if n has any descendant n′ through outer edge pointi

within a distance threshold τ then

10 A′ ← A′ ∪ {n′ } ; /* match distant pi */

11 A← A′;

12 R← ∅ ; /* returned node set */

13 foreach n ∈ A do

14 traverse each subtree rooted at n;

15 foreach traversed node n′ do

16 c← (b AND the region bit arrays on n′);

17 if c = 0 then

18 stop traversing the subtree rooted at n′ ;

/* pruning */

19 if n′ is the leaf node in current inner tree then

20 only keep those intervals c |= 0 on n′;

21 R← R ∪ {n′ } ; /* remaining */

22 foreach n ∈ R do

23 return those trajectories Ti appearing in n.intervals;

4 Top-k Diversification Ranking

4. 1 Top-k Ranking

The main idea of the top-k ranking is that, the points

selected by the users should represent some degrees of the

user’s preference. Although existing POI recommendation

works [1,13,15,31] focus on predicting the next POI that user

will visit, none of these works considers applying the data

mining techniques on top-k trajectory search tasks. As men-

tioned in Section 1, results from trajectory search have many

advantages over predicted POI sequences. The retrieved tra-

jectories need to be carefully ranked by mining the associ-

ations between the user’s preferences and POI correlations.

We take use the point query issued by the users to provide

a most preferred top-k results by training the ranker with

enormous POI visit data (represent as pi → pj → · · · → pk)



provided by Foursquare and Flickr. Moreover, we develop

effective pruning algorithm to drop those trajectories with

low ranks at an early stage. Such techniques and our string

index works in concert with each other for efficient and ef-

fective recommendations.

As we have already separated the whole Euclidean space

into quadtree partitions (see Section 3. 3), we can create the

transition matrix S ∈ R|C|×|C|, according to the POI visit

dataset to describe the transition probability between differ-

ent quadtree cells, where |C| is the total leaf node numbers

of quadtree. Because each POI visit record can be taken

as a sequence:c1 → c2 → · · · → cn, where ci represents a

quadtree cell and ci → cj represents a transition between

two cells. As each entry in S means a transition between

two cells, after aggregating all the POI visits, we can obtain

an initial transition matrix S′. S is obtained by normalizing

S′. Thus we borrow the ideas from [13, 31] to apply matrix

factorization techniques to disclose the latent relationships

between different grid cells as below:

S ≈ CsMCT
s (1)

where Cs ∈ R|C|×ks , M ∈ Rks×ks represent the embedding

matrix and interaction matrix, respectively. ks means the

number of latent features. More optimization details can be

found in [31]. Then we obtain the transition probabilities by

computing the transition matrix. Because we are not going

to compute the probability of a trajectory, we take the prob-

ability as a travel gain here and aggregate the gain together

for ranking purpose which is also used in [1]. When we search

for a query on the index and obtain some trajectories in Al-

gorithm 1, we use the bit array of a node to compute the a

super set of trajectories to be retrieved and compute a upper

bound UB for such a node. By comparing the UB gain with

the k-th gain in the top-k results, we can easily prune such a

node as long as the UB gain is less the the latter. The details

are shown in Algorithm 2. We only need replace Line 22–23

in Algorithm 1 with Algorithm 2.

4. 2 Diversificaiton

To avoid displaying a large answer set containing similar

trajectories messing up the interface, we also develop algo-

rithms to diversify the results.

According to the property of Nested Trie, one interval will

represent one same previous route. Then we can simply pick

up one trajectory from each interval and compute a set with

the highest diversity and also top-k gain. That means, when

we successfully insert a Ti in the top-k set, we will skip to

next interval on n. Such a detail is shown by Line 8 in Al-

gorithm 2.

Algorithm 2: TopK-Diversify (R, S, k)

1 Queue← ∅ ; /* a priority queue of size k */

2 foreach n ∈ R do

3 if n.UB <= Queue[k].score then

4 continue;

5 foreach Ti appearing in n.intervals do

6 if |Queue| < k or gain(S, Ti) > Queue[k].gain

then

7 Queue.insert(Ti);

8 skip to next interval on n;

9 return Queue;

5 Experiments

As the experiments are being carried out hence we will pro-

vide results in the future. We describe the data preparation

as below.

5. 1 Data Preparation

One dataset is used for building the Nested Trie.

• Kyoto is a trajectory dataset recording the raw trajec-

tories generated from the tourists for sightseeing pur-

poses. It contains 3,881 trajectories in total. The aver-

age number of road segments is 424 for each trajectory

after map-matching.

Two datasets are collected for model training and test tasks.

• Foursquare1 is a large-scale POI sequence visits

dataset.

• Flickr is a dataset used widely for recording the check-in

seqence POIs by Flickr users.

The experiments were carried out on a PC with an In-

tel i5 2.6GHz Processor and 32GB RAM, running Ubuntu

14.04.3. The algorithms were implemented in C++ and in a

main memory fashion.

6 Related Work

Multi-Point Query on Trajectories. Searching trajec-

tories by selecting several points as query was a very popular

query paradigm and had a large body of existing works. We

refer readers to a survey for a clear taxonomy over different

query paradigms over trajectories [30]. In one early study,

Chen et al. [2] first studied a problem of searching trajec-

tories by selecting location points as a query, and call this

problem k-Best Connected Trajectories (k-BCT) which best

1：https://sites.google.com/site/yangdingqi/home/foursquare-dataset



connect the designated locations geographically with spatial

distance and order constraint considered. After that, Tang

et al. [21] proposed a new problem called k Nearest Neigh-

boring Trajectories (k-NNT) with the minimum aggregated

distance to a set of query points which has a similar target

applications with [2]. Qi et al. [17] improved the efficiency

performance of such point query by combining existing ap-

proaches to a hybrid method and also studied the practical

variant of bounded distance search by considering the tem-

poral characteristics of the searched trajectories. Yadam-

jav et al. [27] revisited the previous state-of-the-art search

algorithms and proposed an optimized search method lead-

ing to further performance improvement. Recently, Shang et

al. [19] extended the query points to query regions and pro-

posed a novel query type called trajectory search by regions

of interest (TSR query) which returns the trajectories with

the highest spatial-density correlation to the query regions.

Multi-Range Query on Trajectories. The problem

of retrieving trajectories passing multiple spatial regions has

not been investigated too much. Most existing works [5, 25]

focus on searching trajectories passing a single region and re-

lied on traversing R-tree [3] for returning results. The base-

line method [29] is to first find the answers of singe range

query and then compute the intersection between these an-

swers. However, many irrelevant trajectories will be retrieved

and the intersection operations are usually computationally

expensive. Yadamjav et al. [26] addressed this problem by

proposing a two-level index structure that preserves both

the co-location of trajectories and the co-location of points

within trajectories for faster query processing.

Path Query on Trajectories. Path query processing

relies on map-matching trajectories according to a road net-

work. The map-matched trajectories can be seemed as se-

quences of edges or strings and are also called as Network

Constrained Trajectories (NCTs). Sandu et al. [18] first

studied the path query on NCTs by applying spatial filter-

ing techniques and B+-tree indexes for temporal filtering.

Krogh et al. [11] extended the definition of path query and

proposed strict path query where trajectories must follow all

edges in the path. They presented a novel index NETTRA,

which uses new path encoding scheme thus enabling efficient

query processing. Song et al. [20] proposed a new framework

PRESS, to effectively compress NCTs by representing the

spatial and temporal information of trajectories separately.

Krogh et al. [10] proposed SPNET, which is considered the

first in-memory index for NCTs. Koide et al. [8,9] addressed

the strict path query by employing an inverse suffix array

integrating the FM-index and B+-tree with temporal infor-

mation. Li et al. [12] handled the strict path query by modi-

fying existing suffix tree structure to index trajectories using

Microsoft Azure Table. Wang et al. [22, 23] proposed an in-

tegrated search engine which can answer path query, strict

path query, range query and trajectory similarity query by

indexing the edges and vertices of NCTs. Path query also has

applications in the domain of data mining which estimates

the time of a path using NCTs [24].

Trajectory Diversification. Showing the retrieved tra-

jectories in a diversified way has aroused wide concern in

recent years. Hsu et al. [5] applied a skyline computation

to provide more diversity in their work. Liu et al. [14]

formalized the K Shortest Paths with Diversity (KSPD)

problem as finding paths that dissimilar with each other

and the total length of the paths is minimized. Zhang et

al. [28] generated routes according to visual-based diver-

sity and facility-based diversity with information extracted

from Google Street View images and FourSquare venues. He

et al. [4] proposed Top-k Diversified Search (TkDS), which

finds a set of k Origin-Destination pairs that the trajectories

traversing in-between have the highest diversity.
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