iDB2008

Fukushima • Sept.22, 2008

A Real-Time Event Stream Processing System for RFID Monitoring Applications

YU Ge

School of Information Science and Engineering Northeastern University, China

• • • Outline

- o Research Background
- Research Issues in Event-Centric Processing
- o Overview of the REvent System
- Key Techniques
- o Summary

Research Background

o Applications of RFID

- being applied
 - logistics management
 - asset tracking
 - access control and personal tracking
 - sensor network

• in future

.

- goods flow
- people flow
- equipment flow
- money flow

.

- A huge amount of RFID data could be generated continually
- need to be processed in real-time!

Research Background

o Characteristics of RFID data

- Spatio-temporal, dynamics and correlations
 - Data contains time, location, and status

Rich semantics.

- Objects carry a lot of information
- related with its context status and background knowledge

• Uncertainty and heterogeneity

- missing readings, and repeat readings
- dirty data

Streaming, batching and massive volume

- automatically generated rapidly in form of streaming
- Objects must be checked in a batch
- needs to be processed in real time

Research Background

• Current solution for RFID applications

data-centric systems

• Using traditional database technology, e.g. active databases, real-time databases.

event-centric systems

- treat events as first class citizen
- perform event processing directly on data source
- typical systems: SASE system and Cayuga system

- **CEP (**Complex Event Processing)
- Four basic approaches of CEP
 - 1. finite automata based model
 - 2. Petri-net based model
 - 3. tree-based model
 - 4. directed graph based model

o Challenging

Complex semantics, massive data volume, and inaccurate raw data

to effectively manage RFID data, stream-style processing mechanisms is needed

Complex constraints

- temporal order
- numeric value interval
- ➤ traditional ECA rules are not feasible
- > new event model and algebraic operations are needed

o Challenging

Non-spontaneous composite events

- negation events
- repetition events
- The occurrence of the constituent event can not lead to the occurrence of the composite event

> special query processing algorithms are needed

Many queries registered over the same event stream

> new query optimization policy is required

• Problems remain to be solved:

- how to process event happening orders of "and", "or" and "same time"
- how to compose composite events
- how to make use of query sharing for optimization
- how to schedule real-time tasks to meet deadline
- how to deal with uncertain data with probability
- how to perform distributed CEP

REvent : high-performance real-time event stream processing system

Overview of the REvent System RFID event stream **Real-time task** Event Event Event notifier scheduler Collector Queue **Event stream Event detection Event mining** Query **Pre-processor** engine engine processor **Pattern-base** Context **Event-base** Query manager manager manager plan Pattern-base **Context-base Event-base**

o The architecture of REvent system

• Major modules of REvent system

- Real-time task scheduler
 - the proxy of the whole system
- Query processor
 - registers queries for event, makes query execution plan
- Event pre-processor
 - cleans raw data and generates basic events
- Event detection engine
 - filtering and detection of composite events by matching rules
- Event mining engine
 - summary analysis, temporal association mining, classification mining, and outlier detection

• Other auxiliary modules:

- Context manager
 - provides the information about RFID context and background knowledge.
- Event-base manager
 - provides temporary events and archived historic events
- Rule-base manager
 - provides pre-defined rules for detection and stores mining posteriori rules.
- Event collector
 - gets raw data from RFID readers

• The basic data structures

- Event queue
 - a buffer containing basic events
- Query plan
 - a buffer containing execution plans
- Context-base
 - a database about context and background about the observed objects
- Event-base
 - a database containing events
- Rule-base
 - a database containing rules

- o Semantic event model
 - Basic event (Eld, Etype, TS, Location, OID, Data)
- Event operation algebra
 - Sequence operations
 - Non-sequence operations: negation and repetition
 - Restriction operations: partition, within, continunity.
 - Complex operations : sliding-window, grouping and statistics.
- o Query language
 - Express complex rules and application logics
 - XML based script language
 - SQL like event query language

Examples of CEP operations

SEQ(E₁, **DIS**(E₂,E₃))

SEQ(E₁, **CON**(E₂,E₃))

SEQ(E₁, NEG(E₂),E₃)

Partition(SEQ(E_1, E_2, E_3), id)

Within(SEQ(E1, E2, E3), 0, t2)

Continuity(SEQ(E₁,E₂,E₃), ALL)

• • • Key Techniques

Grouping based data cleaning(1) Cleaning aim Reader False negative: missing in 30% probability at door False positive: wrong readings, repetition **Basic idea** Grouping objects according to their association ££ Clean data according to the information within a group £ £ £ £ £ ££ Visitor with tag

• • • Key Techniques

o Pre-processing

- Data cleaning
- Grouping based data cleaning strategy
- o Real time query processing
 - Pattern matching
 - Real time scheduling
 - ✓ Deadline-sensitive pattern matching

Key Techniques

Grouping based data cleaning(2)

- Group identification problems
 - Interferences of different groups
 - Changes of group memberships

• • • Key Techniques

o Grouping based data cleaning(3)

Association degree

$$\delta^{t}(o_{i}, o_{j}) = \begin{cases} \delta^{t-1}(o_{i}, o_{j}) + \omega(t) \text{ iff } \exists k, o_{i}, o_{j} \in \Upsilon_{k}(t) \\ \delta^{t-1}(o_{i}, o_{j}) & \text{ iff } o_{i}, o_{j} \in \tilde{\Upsilon}(t) \\ 0 & otherwise. \end{cases}$$

- Graph based association model
- Compressed tree model
- List model
- spliting and re-grouping algorithm

o Grouping based data cleaning(4)

• • Key Techniques

o Grouping based data cleaning(5)

• • • Key Techniques

o Deadline-sensitive pattern matching(1)

- Aim
 - more correct results that meet deadline
- Basic idea
 - Statistics based approach
 - RFID data arrival model
 - Event processing model
 - Dead-line meeting model
 - Resource allocation model

Key Techniques

Deadline-sensitive pattern matching(2)

• Possion distribution based arrival model $\pi(n,t) = P\{M(t) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$

NFA based processing model

First Mode

Recent Mode

Cumulative Mode

Chronicle Mode

Key Techniques

o Deadline-sensitive pattern matching(3)

Processing mode based cost model

Pattern	Query results of SEQ(E1,E2,E3) with $\langle e_1^1, e_1^2, e_2^1, e_2^2, e_3^1, e_3^2 \rangle$	Cost of other sub- events	Extra cost for terminating event
Unrestricted Mode	$(e_1^1, e_2^1, e_3^1), (e_1^1, e_2^2, e_3^1), (e_1^2, e_2^1, e_3^1), (e_1^2, e_2^2, e_3^1), (e_1^1, e_2^1, e_3^2), (e_1^1, e_2^2, e_3^2), (e_1^2, e_2^1, e_3^2), (e_1^2, e_2^2, e_3^2), (e_1^2, e_2^1, e_3^2), (e_1^2, e_2^2, e_3^2), (e_1^2, e_3^2, e_3^2), (e_1^2, e_3^2, e_3^2$	$C_{insert} + C_{pointer} \\ + \{C_{hash}\}$	$\frac{kC(n + \lfloor v_n w \rfloor - 1, n)}{\prod_{i=1}^{n-1} \frac{E(v_i)}{E(v_n)}}$
First Mode	(e_1^1,e_2^1,e_3^1)	$C_{trans} + \{C_{hash}\}$	$\{C_{comp}\}$
Recent Mode	(e_1^2,e_2^2,e_3^1)	$C_{trans} + \{C_{hash}\}$	$\{C_{comp}\}$
Chronicle Mode	$(e_1^1,e_2^1,e_3^1) (e_1^2,e_2^2,e_3^2)$	$C_{insert} + \{C_{hash}$	$C_{delete} + \{C_{comp}\}$
Cumulative Mode	$(\sum\{e_1^1,e_1^2\},\sum\{e_2^1,e_2^2\},e_3^1)$	$C_{trans} + C_{aggr} \\ + \{C_{hash}\}$	$\{C_{comp}\}$
Continuous Mode	$(e_1^1, e_2^1, e_3^1), (e_1^1, e_2^2, e_3^1), (e_1^2, e_2^1, e_3^1), (e_1^2, e_2^2, e_3^1)$	$C_{insert} + \{C_{hash}\}$	$k \prod_{i=1}^{n-1} \frac{E(v_i)}{E(v_n)}$

• • • Key Techniques

o Deadline-sensitive pattern matching(4)

Deadline meeting model

$$P\{t_w < t_d - t_p\} = \int_{-\infty}^{t_d - t_p} f(x) dx = 1 - e^{-2(\lambda - \lambda^2 t_p)(t_d - t_p))} \ge \sigma$$
$$\theta_{\sigma}(\mu) = 1 - e^{-2(\lambda - \lambda^2/\mu)(t_d - 1/\mu))}$$

Minimum resource model

$$\mu \ge \frac{2\lambda}{1 + t_d \lambda - \sqrt{(1 + t_d \lambda)^2 - 2(\lambda t_d \ln(1 - \sigma) + 2\lambda t_d)}}$$

Key Techniques

o Deadline-sensitive pattern matching(5)

Disorder model

$$\omega_{avg}(E_1, E_2, \cdots, E_n) = 1 - \iiint_{\Omega} \omega(E_1, E_2, \cdots, E_n) \prod_{i=1}^{n-1} f_{i,i+1}(x) dv$$

Least-disorder based scheduling strategy

$$\begin{cases} \frac{\partial}{\partial \mu_1} \omega_{avg}(\mu_1, \mu_2, \cdots, \mu_n) + t = 0\\ \frac{\partial}{\partial \mu_2} \omega_{avg}(\mu_1, \mu_2, \cdots, \mu_n) + t = 0\\ \cdots\\ \frac{\partial}{\partial \mu_n} \omega_{avg}(\mu_1, \mu_2, \cdots, \mu_n) + t = 0\\ \mu_1 + \mu_2 + \cdots + \mu_n = \mu\\ \mu_n = \mu_{minn} \end{cases}$$

• • Key Techniques

o Deadline-sensitive pattern matching(5)

Simulation experimental results

• • • Summary

- Analyzing the characteristics of RFID event stream
- Exploring the challenging problems and key techniques
 - RFID event modeling, data cleaning, event detection, event mining, query optimization, real-time task scheduling, and system architecture
- Designing a high performance real-time event stream processing system

••• Summary

- Future works
 - Prototype implementation and performance evaluation
 - Scenario Simulator by Netlog
 - Real data set collected by experimental devices
 - Practical applications
 - Product location and tracking
 - People tracking in public area like museums, parks

••• The End Thanks!