Data Stream and its Real
Time Processing

Aoying Zhou (A #:x)
Institute of Massive computing
(IMC)

East China Normal University

e

Outlin

I
o Overview of data stream
o Some research work done by us
o Frequent pattern
oClustering and density estimate
oStreaming system
oAggregate query
oComplex data
oUncertain stream

0 Conclusions and future work

Data Stream and Queries

Applications “

Data streams
Digits (e.g., head of a data

Streaming
Data packet)
Results Queries Structured tuple (e.g., Web-log)
XML documents (e.g., pub/sub
— Data Stream system)
S Processing
o Engine
Sata Queries
Streams Continuous/ad hoc Queries
May have different complexity
Limited .
Storage Counting

Structured queries (SQL)
Data analysis and mining

Streaming Algorithms

o 1 MEM: poly(1/e, log N)
o - 1 Query/Update: poly(1/e, log N)
1 %&&)& N: stream size or window size

P :
AN €. error parameter

Data Models

Synopsis Data Structure

(MEM)
Input streams I
I |
: > Stream
| algorithm

—— Approximate
results

According to Data
characteristics

Time series model
Cash-register model
Turnstile model

According to query
range
Landmark model
Sliding—window model
Damped—window model

Frequency Related Problems

Mean + Variance? [~ 4=~ ———— ——————

Find elements that
occupy 0.1% of the tail.

. o O
Median? 1203\4 5 6 7

What is the frequency

a M0 :
8910111213 1DI516 17

Find all elements
with frequency > 0.1%0

of element 3?

What is the total frequency
of elements between 8 and 147

Data Stream Management System
DSMS

]
I
IStreamed ~ Stored
Register Result | Result
Query .

I |

Input streams

v

Stored
Relations

DBMS vs. DSMS

Database Systems Data Stream Systems
Model: persistent Model: transient relations
relations Relation: tuple sequence
Relation: tuple set/bag Data update: appends
Data update: Query: persistent
modifications Query Answer:

Query: transient approximate

Query Answer: exact Query Evaluation: one
Query Evaluation: pass

arbitrary Query Plan: adaptive

Query Plan: fixed

Some Systems Developed at

-b

o Aurora
o Brow University, MIT, Brandeis University
o http://www.cs.brown.edu/research/aurora/
7 Niagara
o University of Wisconsin
o http://www.cs.wisc.edu/niagara/

0 STREAM

o Stanford University
o http://infolab.stanford.edu/stream/

1 TelegraphCQ
o U. C. Berkley
o http://telecraph.cs.berkeley.edu/telegraphca/v0.2/

From Laboratories to
Industries

o Aurora — StreamBase

0 STREAM — Coral8

1 TelegraphCQ — Truviso

1 CEP: Complex Event Processing
1 RT-BI: Real Time Business Intelligence

Our Research Interests

Survey

Frequent pattern

Clustering,
Density estimate

Stream

system
Aggregate query

Complex Data

Uncertainty

JOS
CIKM VLDB DASFAA, | IS
WAIM
DASFAA SDM,WAI | KAIS,IC
M,JCST DE.JOS
JCRD APWEB | DASFAA | FCSC [CDE
DASFAA | ICDE, ICDE
JOS
ICDE ICDE
VLDB
2003 2004 2005 2006 2007 2008

11

Frequent Pattern Mining

Survey

Frequent pattern

Clustering,
Density estimate

Stream

system
Aggregate query

Complex Data

Uncertainty

JOS
CIKM VLDB DASFAA, | IS
WAIM
DASFAA SDM,WAI | KAIS,IC
M,JCST DE.JOS
JCRD APWEB | DASFAA | FCSC [CDE
DASFAA | ICDE, ICDE
JOS
ICDE ICDE
VLDB
2003 2004 2005 2006 2007 2008

12

Synopsis Maintenance & Counting-
Background

Data items: <id,+/->

Queries: count(id)
Usually, hot-spots, i.e., the items with
highest count(id)’s, are most interested.

Existing approaches
Sketch-based [CCFCO2]
Space complexity: Q(k/& log n)
Group-test [CMO3]
Space complexity: O(k(log k+log 1/6)log M)

hCount: Structure and
algorithm

Synopsis data structure
Hash table: S[m][h], each item is a count (
Bloom-filter + counters)
h hash functions: H,,H,, ..., H, (H.:
[1:M]=2>[1:m])
Maintenance
When an item arrives, the hash table is
updated
When a count estimation query arrives

Select one candidate item in each line
Return the candidate item with lowest vaIuS

[Jin, CIKMO3]

hCount: An example

Steps: (1—6):
1. Hash table at t,
2. At t5 : insert(g) Estimate(6)=min(2,8, 2,2)=2
3. Atts : delete(6)

Hash table at tgq
Estimating item 9

o D1 =

Estimating item 6

15

hCount: Conclusion

[Low space complexity: O(g "llog M)

Fast per—tuple processing cost

High recall and precision

1

X8 4 R S
A AN | [;
08 Iy : 7
06 [V1 Jo I
w04 [} x LY
S Ll ;g'%‘a ﬁ"& A A X Fo
M o2 Yt \ / 3‘1\ :'* \ V4 VK J
1 4 Y X 4
o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 []
1 3 5 7 9 11 13 15 17 19
—s— hCount —&— hCount*

—=— proupTest(K=100,T=4) —<— groupTest{(K=200,T=4)

---¥--- Lossy Counting — O— Frequent

08
06
= [} L)
20-4 A ‘X !
= n
[i L7 p
£02 g ¥ RN
ST P e R Gt
1 3 5 7 9 11 13 15 17 19
—— hCount —&— hCount*

—=— groupTest(K=100,T=4} —— groupTest{K=200,T-4]

---¥--- Lossy Counting — O — Frequent

16

Frequent Pattern (FP) Mining:

Problem Description

Frequent pattern mining is a basic problem in data mining
Given a set of transactions, each of which is a set of items

The support of an itemset is the frequency of the
transactions contain the itemset

To find out all the itemsets whose support is greater than
the threshold

Frequent pattern mining over data streams is different to FP
mining on static databases

The data stream can only be scanned once

For combinational explosion, previous FP-mining methods
cannot be extended to be applied on data streams

Basic idea
Frequent item mining is the first step of FP mining
Existing methods can be classified as:
False positive methods, and
False negative methods

FP MIning - False Positive vs. False
Negative

False positive methods

The itemsets whose support is lower than the threshold
may be returned

x Too many false positive results may greatly affect the
reliability of the mining process

Previous methods (based on error control parameter ¢) all
report a large amount of false positive results

A large amount of combinations of items should be considered
due to the false positive items/itemsets

May result in huge consumptions of memory storage
False negative methods
May ignore itemsets whose support is above the threshold
v Higher accuracy
v Much fewer storage consumption

FDPM (Frequent Data-stream Pattern
Mlnlng) [Yu, VLDBO0O4]

Mining frequent patterns (items/itemsets) from a high speed
transactional data stream.

A large data item domain (1)
A virtually unbounded sequence of a data stream (N)
Limit memory space (M)
One-scan of data
The main difficulty of frequent itemsets mining
The possible number of itemsets is 2/-1
When N becomes very Iarge the p055|b|l|ty of an |temset to be

i = N S P TP
d

|[€L|U€IIL UCLUIlleb Idfgtﬂ dllU IL Ib UIIIILUIL LU LirdCK WILII II”IIL
memory.

The technique of frequent itemsets mining is largely
dependent on the technique developed for frequent items
mining.

Approximate mining with two parameters € and 0, using a
Synopsis.

19

FDPM: Basic Ideas

Mining frequent items

Using dynamic error parameter ¢, (decided by
minimum support and probability parameter 6)

o is used to control the memory consumption
Space complexity is related to In(1/6), not 1/¢

Pruning technique: Chernoff bound

Extension: Mining frequent itemsets
Using rules to reserve frequent itemsets

20

FDPM — Summary

FDPM: One-scan false-negative algorithm for
frequent pattern mining

The frequent itemsets that are falsely dropped are
probabilistically bounded

The accuracy of frequent item mining is theoretically
guaranteed

The empirical bound of accuracy for frequent itemset
mining is investigated

Empirical result show the effectiveness and efficiency
of our FDPM method

Clustering and Density

- estimatior

Survey

Frequent pattern

Clustering,
Density estimate

Stream

system
Aggregate query

Complex Data

Uncertainty

JOS
CIKM VLDB DASFAA, | IS
WAIM
DASFAA SDM,WAI | KAIS,IC
M,JCST DE,JOS
JCRD APWEB | DASFAA | FCSC [CDE
DASFAA | ICDE, [CDE
JOS
[CDE [CDE
VLDB
2003 2004 2005 2006 2007 2008

22

Clustering using GPU

[Cao, WAIMO6]

Graphics Processing Units
Parallel processing
SIMD
Observation
K-means is a widely used clustering method
GPU can optimize two time-cost operations

The above operators can be optimized by
GPU

Clustering an Evolving
Stream [Cao, SDMO6]

The clusters will change their shapes with
time going on.
Important to report the changes.

Our method: Density-based clustering
method

Capable of summarizing clusters with
arbitrary shape.

Contributions

Can handle arbitrary shape, not only
spheres.

Capable of reporting outliers

Using outlier-buffer to hasten the
processing.

Aarlhioviae ~rnncictanthvy hinhh Aliickarinnm

Clustering an Evolving Stream:
Algorithm
]
o Structure
C—-Micro-cluster:
m used for potential clusters
w In the
O-micro—cluster:
= potential outliers
w In the
o Merge operator
For each new pointer

m Try to find an existed micro—cluster in main buffer to merge

m [f failed, check whether it can be absorbed by an o—micro-
cluster.

m If step 2 successes, try to convert an o—micro—cluster to a
c—micro—cluster

m If Step 2 failed, this point is created as an o—micro—cluster.

memory

Clustering an Evolving Stream:

Experiments
I

(a) Data set DS1

TH

SR

(b) Clustering on the evolving
stream EDS with 5% noise(t—20)

a) Clustering on DS1 with 5%

noise

Clustering over Sliding Windows—Problem
Description

For continuously arriving multi-
dimensional (d-dim’l) tuples Xi(x.!,x2,...x9),
analyzing

The clusters on the last N tuples

The emerge, development and trends of
these clusters

Previous methods:

x Cannot efficiently process over sliding windows,
or

x Cannot accurately analyze the evolving of a
specific cluster

SWClustering: Clustering over Sliding

Windows [Zhou, KAISO7]
e
1 Goal:

o Clustering over sliding window
o Tracking the evolving of clusters

28

SWClustering: Clustering over Sliding
Windows [Zhou, KAISO7]

Basic idea
Integrate information of time in cluster features

Maintain sufficient information about the evolving of a
cluster

Embed cluster features (CF) in exponential histograms
(EH)
{EH({CF})}
Can maintain the sufficient information for clustering with
approximation factor 1+¢

Compared with pyramidal technology [AHWY03] SS,({CF;}):
v Need not to store snapshot SS

v Since a specific cluster can be retrieved to be analyzed
alone, it is more flexible

29

SWClustering: Data
Structuke

P, P, P, P,

Ps Ps|P7 Pg | Py ‘Plo

~ - —~’
TCE 2 1-tier TCFs 2 o-tier TCFs
Temporal CF
EHCF
r e Maintaining multiple EHCF Sl
TCF simultaneously
Temporal CF:

 Clustering is in fact the
merge of multiple EHCF

(CF2,CF1,t,n)
" J

 Efficiency can be further
Improved by later merging
of EHCF

30

SWClustering: Experiments

O

SWClustering
V.S.
CluStream

Economic
space
consumption

@ arrivedin (0]

arrived in (ty,13]
8 arrivedin (t5,t3]
Oy amivedin (tsty]

(a) The formation of micro clusters in
CluStream

@ arived i (0.t
arrived in (t),t5]
arrived in Etz,f-!,]

(3 arrived in (tats]

(b) The micro clusters formed by re-
cent records in CluStream

(¢) The formation of microclusters in
our sliding-window-based method

DD

O
050
M

C
MC |
C2

(d) The micro clusters formed by re-

cent records in our shiding-window-
based method

Clustering Analysis -
Summary

SWClustering is more accurate and
efficient than snapshot-based methods

Due to the embedding of CF in EH, the
analysis is more flexible

Theoretical analysis show that the space
consumption is limited

Empirical result show that this method is
efficient for clustering a data stream

Distributed Clustering:

Scenario [Zhou, ICDEO7]
]

- Goal: Reducing the communication cost

User Mining Request

Global Stream oordinator

Mining Result
S=5U...US,

-ne |

update stream

update stream | update stream

Expectation-Maximization (EM)
Algorithm
T =

1. Initialization: Initialize the mixture model pa-

rameters (wY, 1 ” YN, 5 =1,....k, and iumahlon
R Rl WA) AR
step ¢ = 0.
2. Repeat

(a) E-Step. For each record z, compute the

membership probability of 2 in each cluster:

. wt-Pr(z|j)
Pr(jlz) = g0 =1, k.

(b) M-step. Update the parameters of mixture

11 i+ 1 1 5 T ARI DAY
model: wJ = m L:}:ED £ri1r),
yitl — TacpoPrila)
J S e PrG)

Ei+1 . Zmel) Pr(jlz)(xz— 1L‘+1)(T 'u"+1)
;5 > reh P?"(J|T)
=1k

(c) Compute the log likelihood:
Bt =% log Pr(’v)

ra—

Distributed Clustering: Basic
Steps

Remote site processing
Divide & Conquer

Cluster the incoming data records only after they
don’t pass the test

Coordinator Processing

Avoid local maximal --Over component population

In general, when many data records lead to almost
equal posterior probability for any two components,

it can be thought that these two components might
be merged.

Myerge(i j) = -

Distributed Clustering:

Summary

A framework to cluster the distributed
data streams with soft membership in
consideration

Event driven clustering for capturing

the distribution of individual stream at
remote site

Can also be applied to a lot of related
problems

Our Interests: Streaming

== SYStem

Survey

Frequent pattern

Clustering,
Density estimate

Stream

system
Aggregate query

Complex Data

Uncertainty

JOS
CIKM VLDB DASFAA, | IS
WAIM
DASFAA SDM,WAI | KAIS,IC
M,JCST DE,JOS
JCRD APWEB | DASFAA | FCSC [CDE
DASFAA | ICDE, ICDE
JOS
ICDE ICDE
VLDB
2003 2004 2005 2006 2007 2008

Shared Window Joins:
Definition

o Example

Ql: SELECT count(A.Id) TR
FROM A, B R ;_;’?
WHERE A.Id=B.Id and A .
WINDOW 1 min; e

Q2: SELECT A. Id, MAX(B.value) ==
FROM A, B

IXTTTITT AT TT

—_THO T7T1 TN\ IDERD) T 1
WHERE A.Id=B.Id GROUP BY A. Id

WINDOW 1 hour;
71 Previous methods

MQT!HFAEO3]: schedule tuples according
to the window sizes

x Cannot adapt to the bursty stream rates

-

Aggregate
Group By

W2

"COUNTY _)
Agoregale

Shared Window Joins: Load
— Shedding [Yan, JCRDO4]

- Basic Idea (Load shedding)

When the query cannot be handled with current
resources, parts of data is dropped to shed system’s load

Can enhance system’s throughput
x Can only provide approximate results
o Steps

W. | !
Deploy load shedding s, W %iw i =) q
operators at every window | = @ 5 q
Two strategies R N |
= Uniform shedding W | ‘ i ® dn
= Small-window exact shedding b L

Shared Window Joins: Adaptive

Scheduling [Jin,
]

FCSCO07]
- Basic Idea

Schedule tuples according to the count of data items, not
the time-base window sizes

Can reduce the response time
o Example

Consider three queries Q1, Q2, Q3 over two streams A,
B, whose window sizes wl, w2, and w3 are 1 second, 2

second and 3 seconds respectively. The rate of stream A is

le /s 0, wi]
(Wi, w2]
(w2, w3]

before t (t, t + 1] (t+1,t+ 2]

(t+2,t+ 3]

Shared Window Joins: Adaptive
Scheduling

The method

All uncompleted tuples are reserved in a BUFFER.
Monitoring the number of tuples in the BUFFER.

Normally, the number of tuples is in low level.

When it exceeds a threshold, a burst rises.

Generate a real-time scheduling plan according to tuple
distribution.

Schedule future tuples and buffered tuples by the new scheduling
plan.

Analysis

The real-time scheduling plan is optimal for bursty
tuples.

Cost to generate a scheduling plan can be ignored.

It much outperforms MQT (best previous method)
method for applications where rate changes violently

It owns comparable performance with MQT method

IAJIAAIA N TN :A A-I—A—\'J"

SMART: Background

[Zhou, ICDEOS8]

SMART: A System for Online Monitoring Large
Volumes of Network Traffic, a project from
Shanghai Telecomm

More and more business of Telecommm are run on
IP network

Acquire network traffic patterns and take quick
actions on abnormalities

Problems of current systems in telecom
companies
Based on Flow-tools in a disk-based offline manner
Inefficiency, too long response time
Solutions — streaming algorithms
Memory based
Approximate with error guarantee
Abstract in formations into sketches

SMART: Sliding Window Frequent
Top-k
-

7 Multi-level structure

S S EE— — —
S S =y
59 940 00 59 9@ O

Task Management

Userl rface %
Reportsél i I I]"

LO00000 |
900,000 | Gt
800,000
700,000
600,000
500,000
400,000
300,000
200,000
100,000
1]

200 0000 0200 0400 0600 0800 10:00 1200 1400 1800 1800 2000

Percent in TopN

DD ;\:'

O
>4134
= 47.73
0--50 =
20.14

—0-->4134 —0-->0 —0-->4812 0-->4837 —0-->64740 — 0-->64660
0-->64741 —0-->64757 —0--517633 —0-->64521 —0-->4814 —0-->64711

—0-->64756 —0--»65270 —0--»>17672 —0-->64753 —0--»64759 — 0--»64680
0-->64713 —0--»65210

®0-->4134 =47.73 #0-->0=20.14
©0-->4837 =762 0-->4812 =58
®0-->64740 = 3.43 ¢ 0-->64660 = 1.77
©0-->4814 = 1.66 ®0-->64741 = 1.59
®0-->64757 = 1.09 #0-->17633 = 1.06
®0-->64521 =099 #0-->64711 = 0.96
®0-->3462 = 0.94 #0-->23724 = 0.B8
®0-->65270=0.78 ®0-->17672 = 0.77
®0-->64753 = 0.75 #0-->64756 = 0.74
0 0-->65210 = 0.65 ®0-->4808 = 0.64

Our Interests: Streaming

=)Stem

Survey

Frequent pattern

Clustering,
Density estimate

Stream

avvetoam

Aggregate query

Complex Data

Uncertainty

JOS
CIKM VLDB DASFAA, | IS
WAIM
DASFAA SDM,WAI | KAIS,IC
M,JCST DE,JOS
JCRD APWEB | DASFAA | FCSC [CDE
DASFAA | ICDE, ICDE
JOS
ICDE ICDE
VLDB
2003 2004 2005 2006 2007 2008

Aggregate Monitoring:
Problem

Aggregate functions: sum, avg, min,
maX, "

Applications of online monitoring data
streams:

Networks traffic management, trend-related
analysis, web-click streams analysis, stocks
exchange, e-mail and news articles, and sensor
networks.
However, existing methods suffer
several problems:

Expensive cost of time O(m)

Aggregate functions are restricted to be first-order
statistic or monotonic with respect to the window
size.

Aggregate Monitoring:

Problem

Assuming that F is an aggregate
function, w is a sliding window with
given length, and T(w) is the threshold
of F(w) given by users beforehand.
The result is reported on W, when
stream X is updated and if F(w) >T(w

).

Fractal-based Approach:

contributions [Qin, ICDEO6]

Incorporate the tool of fractal

analysis and can process data

which does not obey the exact
fractal models.

The monotony property of
aggregate monitoring is revealed

- "MMAanntfAnNnI~A cnaarrih R 10 Iyl #
aliJu 111VITULVUILTIC OCTdl Ul 1| DPGLC 1S5 IJUIIL

to decrease the time overhead
from O(m) to O(log m).
Propose a novel synopsis, called

Inverted Histogram (IH), and
provide the error bound for IH

- - - o "2 o ol "2 ___

Fractal-based Approach:

Fractal
[]

“Power Law Scaling Relationship

When a quantitative property, g, is

measured on scale s, its value depends on s
according to the following power law scaling
relationship:

3

Exact fractal: +
°I' Statistical fractal: -

A

e

)
e

log g

= I %] Lt [0

Fractal-based Approach: Inverted
Histogram

X;' 1S suffix sum of stream x;---X,
n
' _
X'= 2 X;
j=i

Relative Error is bounded by d
by b; bp.|

1 1 1 1 mm= 1 1 1 =
KX 2, X 3, X 4ee LSRRI X 2, X 14

Increasing time

Time cost: O(nlog(nR)/log(1+6))
Space cost: ~ O(log(nR)/log(1+06))

Fractal-based Approach: Inverted
Histogram

Histogram building procedure

when X, COmMes 1: increase bucket number B by
1;
Add a new buc 9 i B:

For all buckets from thedatest: e the:ieldest ene

Update each bucket—

IJE; add x, to both b:? &

Merge two consecutive buc

End For 6:1f bP< (1+ d)b? then
7. b b <~ bb;
3: add Wldth of b; to width of b; ;
9: delete b;;
10: decrease bucket number B

by 1;

Fractal-based Approach:

Conclusions

A novel method for monitoring
aggregates of multi-granularity
windows over a data stream

Fractal analysis is introduced to
transform the original data stream
to an intermediate one

Inverted histogram is adopted as
the core synopsis for our
monitoring tasks with guaranteed
space and error

KNN monitoring

Two scenarios

Network Monitoring

Administrator specifies suspicious packages, the
system is constantly surveyed for similar packages

Advertisement

Users specify property of interested products or
news, the system informs users when new items fit
their requirements

Similarity query
Range query
K-NN query

Basic idea
skyline o o

KNN monitoring: Object

Maintenance
I

o Skyline

>

D

distance to g,

fm -
time of expiry

e

time of expiry

>

distance to g,

>

KNN monitoring: Object
Delaying
]

o Approximate and exact skyline
Buffer : size |B], in life span order
Exact skyline: stores skyline points from
approximate skyline
Approximate skyline: stores the address of skyline
point: *—remain > | Lelay—"]

—

1
J

L1
1

|
c |
g
o= LG re
*+D 7

— L

Exact Skylvi{e /%pproximate Skyline

»
*S

Buffer

runtime in s

KNN monitoring: Experimental

Results

—— our algorithm
~- without index
—d— \vithout buffer

200000 400000 600000 8000CO 1000000

skyline objects
2 o

runtimein s

200000 400000 600000 800000
N

(h) Scalability w.r.td.

—o— clustered gaussian

~- uniform

500 1000 1500
(=]

Figure 9: Buffer Size.

2000

Our Interests: Complex data

Survey

Frequent pattern

Clustering,
Density estimate

Stream

system
Aggregate query

Complex Data

Uncertainty

JOS
CIKM VLDB DASFAA, | IS
WAIM
DASFAA SDM,WAI | KAIS,IC
M,JCST DE.JOS
JCRD APWEB | DASFAA | FCSC [CDE
DASFAA | ICDE, ICDE
JOS
ICDE ICDE
VLDB
2003 2004 2005 2006 2007 2008

XML Streaming: Motivation

[Gong, ICDEO5]

Data
Data Consumers
Producers

XML Streaming: Content
Routing

Problem

Each node is a router, which disseminates incoming XML
packets to its neighbors or users.

Each router maintain a route structure for each user,
which is used to determine if the XML packet will be
matched by user’s queries.

/«/
\
Challenges

Large number of users and q[Filter structures for its users and neighbors }
Changes of queries

Basic Idea
Using bloom filter to build the route table

XML Stream Processing: Application

Scenario
]
]

. _‘n [———
@ Publish ﬁ‘)e‘“’er Data
D Consumers
ata Router
Producers ‘/6/ g
/2
%
‘\0
\0 / Data
Q‘ Transfo m ﬁ Consumers
N

@ \)‘O\ Router K Router Router\ g
Data Ublisp Data
Producers \Neﬂ“g Consumers

Router

Publish/subscribe systems, monitor applications, content-routing systems ...

XML Stream Processing:
Background

XML stream: a sequence of XML packets, each of
which is an XML document or a fragment of XML
document

A large XML document is also treated as a stream of
XML fragments (packets)

Applications
Stock and sports tickers
Traffic information systems
Electronic personalized newspapers

XML Stream Processing: Application

Scenario
]
]

in —

. ver

@ Publish > ﬁne\\\le Data

Dat Consumers
ata P Router

Producers 4, g
(L
%

R
‘\\0‘\ > / Data
< = Consumers

A\
“9
\S°\\ Router A Router Router\
¢ Z g

Pubs: &
Data blish Data
Producers ﬁ oe\'\"e““g Consumers
Router

Publish/subscribe systems, monitor applications, content-routing systems ...

XML Stream Filtering: Application

Scenario
e

iverin —
@ Publish . @De“"e Data
Dat Consumers
ata A Router
Producers 4, Q
7
%

Data
Qnsumers

01001010

11011001

u »
Data blisp,
Producers

01110011

11000110

Router
Publish/subscribe systems, monitorkeACH router maintains a routing tabt€

XML Stream Filtering: Previous

Solutions

Autonoma-based
technology

Using an automata to
build the routing table,
which sharing the
prefixes of all path
queries.

XFilterlAF00],
YFilter(Prr+02],
XTr-ie[CFG+02], XPUSh[GSO3],

Index-based technology

Building an (start, end,
level) index on XML tags
for each packet

Eva_Iluat_e path prefix tree

.Parse. with stack

)] Ry
[}) *;:
RN (Oopen B =
A B (open C,
R R e) Close C]
Oopen ® C,(4:7
B, Cs D, _fp,_n 1 142 o K
/\ \ Closes B, B, (3:7
C E D Close B, (?
1 1 1 Open 7
XML document SAX-based parser Stack
7______,_scar.t...._4k
C,(4:4,4) B (L 1)
E,(5:5,4) A (2 £ 2)
B, (3:6,3) B, (3 3)
n,(8:8,4) R_(]
C,(7:9,3) c, (4
Intermediate results Final indexes

XML Stream Filtering: YrFilter vs.
IndexFilter

oF
Queries
q500

0: 0000
0
o

YFilter IndexFilter

S
| T~ /\-_—-

ETR anr arg W e sdm

T Documents AN
L 1 ll' ll' ll' ll' lr lr ne T:

YFilter is more efficient than Index-Filter when

the number of queries is large and the XML
packets are small.

Index-Filter is fit for large XML documents and
little queries.

XML Stream Filtering: Bloom-filter

based Method

An XML path query is
treated as a query
string.

Using Bloom Filter to
build the routing table.

An XML packet is parsed
to generate a set of
candidate paths.

Prefix filters are used to
decrease the number of
redundant candidate
paths.

A
I
B
I

C
\

D

Candidacy path

IA A, I
1B, 1%, INIB, IAIIB, IAF*, IAII*, ...
HC, I, IAIBIC, IAIBIIC, IAIIBIC, ...

IA/BICID, IAIBICIID, IA/BICID, ...

Candidacy paths

Ny ol ol o[111/ 0]

hy(Q —— 7

< h,(Q)

N |1 [o] 171 0]1]
n ﬂﬂﬂﬂn ':>U1 nnn — {E:‘LJ“L\J_Q} N Ny, Na, Uy}

U, [1[ll o] 1] 0] 0] o]

LNI‘ U:J

Us [0 [1] o[o[1]0

Routing table

olel~lele]=~]=]°]

[~[e]=leo[e]o]~]~]

Routing Table Construction: Bloom Filter based

30 7

(=]
T

Automata-based / Bloom Filter-based
Lh
Automata-based / Bloom Filter-based
(Size of Routing Table)
(&%) (¥8) = n -1
T T T T 1

= 25 b
= 20 F
15 +

= 10 |

—
T

0
100 200 500 1000 0
N : Jser 100 200 500 1000
Number of Users Number of Users
~#- 100 Queries per User —8-200 Queries per User —4— 100 Queries per User -B- 200 Queries per User
—&— 500 Queries per User = 1000 Queries per User —&— 500 Queries per User - 1000 Queries per User
(a) Building Time (b) Routing Table’s Size

~ Bloom Filter-based is more efficient than Automata-based
when building routing table

+ The size of the routing table is much smaller when using
Bloom Filter-based technique

XML Packet Filtering: Bloom Filter based vs.
YFilter

Time (scc)

1000

100 ~

10 4

Time (sec)

100 200 500 1000
Number of Users

1000 +

100 ~

10

0.1 -

p4 1000 Users / 1000 Queries per User
.......... 100 Users / 100 Queries per User
2 3 4 5

Depth of XML Packets

- Bloom Filter-based —h— Automata-based

—&— Automata-based
--4&-- Automata-based

—— Bloom Filter-based
--#--Bloom Filter-based

(a) 500 Quertes per User

(b) 10, 000 Queries vs. 1, 000, 000 Queries

~ Bloom Filter-based technique can handle millions of path

queries efficiently.

~ When the depth of the XML packet is no more 5, Bloom
Filter-based is efficient than Automata-based.

XML Stream Filtering: Summary

Both high accuracy and high performance
can be achieved by using Bloom-filter
based approximate filtering method

Current technique cannot efficiently
process complex XML packets (i.e. XML

documents with large depth)

[Yan, ICDEOS8]

Goal:

Continuous Content-Based Copy Detection
over Streaming Videos

Motivation

Copy right problem

Original videos may be edited with their frames
being reordered, to avoid detection

VDBMS V.S. VDSMS

Many concurrent video streams and many
continuous video copy monitoring queries.

Video Stream: System
Implementation

]
1 Arc

Video Stream

nitecture

ModuleS (SketchingVideo Stream)

Query Sequences

eature candidate sequence
/ . skeich |—> _
extraction generation
W
effective prunning
fast computing bit Copies
memory efficient signature
' a2
| B]

Module C (Copy Detection)

1§ 3954

r

i
Jeature - _
evtraction | Sketch > sketch index

Modulel (Query Index)

8en0e CATCH =
= oo

Stream : Queries Build Detect Compare
Stream: The Match Tree and The Result Statistics

Stream Server Conneted...

Queries

Applelntel.mpg)

1

2 Israeli.mpg

3 Oh-Mama.mpg

4 Motorola.mpg

5 Reklama.mpg

6 Subway.mpg

7 McDonald.mpg

8 Dillard's(o).mpg

9 BudLight.mpg

10 Vibe-Eyewear.mpg
11 Saab.mpg -

.

Queries Statistics

Number: 200
Maximun Length: 300 sec.
Minimum Length: 30 sec.

00:10:30 - 00:11:09
00:12:47 - 00:13:27 6
¥ Motorola.mpg &
None
¥Reklama.mpg
00:05:34 - 00:05:55 5
00:08:04 - 00:08:23
P Subway.mpg
»McDonald.mpg
#Dillard's(o).mpg o

Iz 1234667881012

P BudLight.mpg i

View Precision Comparison

TQuery Reklama mpg Result D0:08:04 - 000823

E Warp a Seq

BT

(ED W Proecision
[

L

o A=

CATCH WARP 8D

Video Stream: Key Techniques

T
o Frame Fingerprint

Frame signature poranidpariion
extraction o -eocner N
Dimension reduction />(///

- Similarity Measure

DEFINITION 2. Video Sequence Similarity. Given two video
sequences Q and P, the similarity is defined as:

QN P
ng(Q P) [/ Dl
& UL

i e
Prir(Q) = ~(P)} = 202

- - . e
. -~ \Grid partition

|

7 Cellid

Video Stream: Subsequences
Comparison

t=1 t=2 t=3

| 1~-2] 2 1~3 2--u3l 3
|

(a) Sequential

t=1 | t=2 t=3 | t=4
-
1 |1~24_/2 1-2 2%| 3 ‘1~4 2-3(|3~4]|| 4
t=8
-
1-8|[2~5||3~6||4~7]||5~-8||6-7|7~-8]| 8
— —

(b) Geometric

Our Interests: Uncertainty

Survey

Frequent pattern

Clustering,
Density estimate

Stream

system
Aggregate query

Complex Data

Uncertainty

JOS
CIKM VLDB DASFAA, | IS
WAIM
DASFAA SDM,WAI | KAIS,IC
M,JCST DE.JOS
JCRD APWEB | DASFAA | FCSC [CDE
DASFAA | ICDE, ICDE
JOS
ICDE ICDE
VLDB
2003 2004 2005 2006 2007 2008

Uncertain Stream: Definition

[Jin, VLDBOS]

ID Reading Info Speed (x10) | prob.
1 | AM 10:33, Honda, X-123 5 0.8
2 | AM 10:35. Toyota, Y-245 6 0.5
3 | AM 10:37, Mazda, Z-341 8 0.4
4 | AM 10:38, Benz, W-541 2 0.4

:JW 1

OROICICICOIORCICICIOICICGIONOE)

Table 1: 4 Radar rcading records

2 3 4) 6 7 8 9

10 11 12 13

©@eOOEOE®EO 60600 @

@@ @
@

o, 064 084 016 016
096 096 024 024

@

096
144

024 096
036

144

1 & 1=
()

empty

024

036
76

Framework

GOAL: designing a general framework for all kinds of top-
kK queries,
not only for a special kind of query.

Design

List all Useful Compress
Compact Set) Compact Sets) Compact Sets

1. A small subset of 1. W different windows. 1. CSQ, CCSQ, SCSQ,

the original dataset l.e., [t-], t], for j=0..W-1 SCSQ-buffer
2. Self-maintenance 2. One compact set for 2. Space-efficient
C(hUu{thcC(D)U{t} each window 3. Time-efficient

3. Capable of answering
a top-k query

Sliding-window Top-k Queries on Uncertain
Streams, VLLDB 2008 77

Performance summary

Space Processing time
consumption

Basic Synopsis O(W + kH) O(kH2/W+ logW)
Compact Set Queue O(H2logW) O(kH?2)
Compressed O(H(k+ log W)) O(kH?)

Compact Set Queue

Segmental Compact O(H(k+log W)) O(kH logW)
Set Queue

SCSQ-buffer O(H(k+ log W)) O(kH2/W+ 1logW)

Sliding-window Top-k Queries on Uncertain
Streams, VLDB 2008 78

Look ahead -

Query Processing
L document
filtering
Cluster analysis: Analyzing changes of frequency on
multi-diml¢spaces
Online XML documen
transformation
Execution and Mining frequent items and
Burst detection: Analyzing changes of
scheduling of multiple itemsets
o frequency on 1-dim’l spaces
joins
Synopsis maintenance and Data Analysis and Mining

counting

References

[AFOO] Mehmet Altinel, Michael J. Franklin: Efficient Filtering of XML Documents for Selective
Dissemination of Information, VLDB’2000

[AHWYO3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. VLDB’2003.

[AMS96] N. Alon, Y. Matias and M. Szegedy. The space complexity of approximating the
frequency moments. STOC’1996

[BGK+03] Nicolas Bruno, Luis Gravano, Nick Koudas and Divesh Srivastava: Navigation- vs.
Index-Based XML Multi-Query Processing. ICDE’2003

[CCFCO2] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
In Proc. of the 29th ICALP, 2002.

[CFG+02] C. Chan, P. Felber, M. Garofalakis, R. Rastogi: Efficient Filtering of XML Documents
with XPath Expressions, ICDE’2002

[CMO3] G. Cormode and S.Muthukrishnan. What’s hot and what’s not: Tracking most frequent
items dynamically. In Proc. of ACM PODS, 2003.

[DFF+02] Yanlei Diao, Peter Fischer, Michael Franklin and Raymond To: YFilter: Efficient and
Scalable Filtering of XML Documents. Demo paper. ICDE’2002

[GMMOOOQO] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data stream.
FOCS’2000

[GMO+03] Todd J. Green, Gerome Miklau, Makoto Onizuka, Dan Suciu: Processing XML
Streams with Deterministic Automata, ICDT 2003

[GSO03] Ashish Gupta and Dan Suciu: Stream Processing of XPath Queries with Predicates.
SIGMOD’2003

[HFAEO3] M. A. Hammad, M. J. Franklin and W. G. Aref and A. K. Elmagarmid. In proc of
VLDB, 2003.

References (2003-2004)

[Zhou, DASFAAQ3] Aoying Zhou, Zhiyuan Cai, Li Wei, Weining Qian:
M-Kernel Merging: Towards Density Estimation over Data Streams.
DASFAA, 2003: 285-292

[Jin, CIKMO3] Cheqing Jin, Weining Qian, Chaofeng Sha, Jeffrey X.
Yu, and Aoying Zhou. Dynamically Maintaining Frequent Iltems over a
Data Stream. CIKM, 2003

[Jin, JOS04] Cheqing Jin, Weining Qian, and Aoying Zhou. The
Analysis and Management of Streaming Data: A Survey. (In Chinese)
Journal of Software (JOS), 15(8). 2004

[Yan, JCRDO4] Ying Yan, Cheqing Jin, Feng Cao, Hengjie Wang,
Streams, Journal of Computer Research and Development, (in
Chinese), Vol. 41, No.10, 2004.

[Yu, VLDBO04] Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, and
Aoying Zhou. False Positive or False Negative: Mining Frequent
[temsets from High Speed Transactional Data Streams. VLDB, 2004

81

References (2005)

[Gong, ICDEO5] Xueqing Gong, Weining Qian, Ying Yan and Aoying
Zhou: Bloom Filter—-based XML Packets Filtering for Millions of Path
Queries. ICDE’ 2005

[Zhou, DASFAAQ5] Aoying Zhou, Shouke Qin, Weining Qian:
Adaptively Detecting Aggregation Bursts in Data Streams. DASFAA
2005: 435-446

[Chong, DASFAAQ5] Zhihong Chong, Jeffrey Xu Yu, Hongjun Lu,
Zhengjie Zhang, Aoying Zhou: False—Negative Frequent [tems Mining
from Data Streams with Bursting. DASFAA 2005: 422-434

[Xia, WAIMO5] Tian Xia, Cheqing Jin, Xiaofang Zhou, Aoying Zhou:
Filtering Duplicate Items over Distributed Data Streams. WAIM 2005:
779-784

[Jin, APWEBO5] Cheqing Jin, Aoying Zhou: Distinct Estimate of Set
Expressions over Sliding Windows. APWeb 2005: 530-535

82

References (2006)

[Qin, ICDEO6] Shouke Qin, Weining Qian, Aoying Zhou: Approximately
56%%essing Multi—granularity Aggregate Queries over Data Streams. [CDE

[Yu, ISO6] Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Zhenjie Zhang, Aoying
Zhou: A false negative approach to mining frequent itemsets from high speed
transactional data streams. Inf. Sci. 176(14): 1986-2015 (2006)

[Cao, SDMO6] Feng Cao, Martin Ester, Weining Qian, Aoying Zhou: Density—
Based Clustering over an Evolving Data Stream with Noise. SDM 2006

[Chong, JCSTO06] Zhihong Chong, Jeffrey Xu Yu, Zhengjie Zhang, Xuemin Lin,
Wei1 Wang, Aoying Zhou: Efficient Computation of k—Medians over Data
(Sgg%aegls Under Memory Constraints. J. Comput. Sci. Technol. 21(2): 284-296

[Zhou, DASFAAQ6] Yongluan Zhou, Ying Yan, Feng Yu, Aoying Zhou: PMJoin:
Optimizing Distributed Multi—way Stream Joins by Stream Partitioning.
DASFAA 2006: 325-341

[Cao, WAIMO6] Feng Cao, Anthony K. H. Tung, Aoying Zhou: Scalable
Clustering Using Graphics Processors. WAIM 2006: 372-384

[Qin, JOS06] Shouke Qin, Weining Qian, Aoying Zhou. Fractal-Based
Algorithms for Burst Detection over Data Streams. Journal of Software. Vol.
17, No. 9, 2006. (In Chinese)

83

References (2007)

[Zhou, KAISO7] Aoying Zhou, Feng Cao, Weining Qian and
Cheqing Jin. Tracking clusters in evolving data streams over

sliding windows. In Knowledge and Information Systems: An
International Journal(KAIS Journal), Vol. 10, No. 3, March, 2007.

[Zhou, ICDEQO7] Aoying Zhou, Feng Cao, Ying Yan, Chaofeng
Sha, Xiaofeng He: Distributed Data Stream Clustering: A Fast
EM-based Approach. ICDE 2007: 736-745

[Bohm, ICDEQ7] Christian Bohm, Beng Chin Ooi, Claudia Plant,
Ying Yan: Efficiently Processing Continuous k—NN Queries on
Data Streams. ICDE 2007: 156-165

[Jin, FCSTO07] Cheqing Jin, Aoying Zhou, Jeffrey Xu Yu, Joshua
Zhexue Huang and Feng Cao. Adaptive scheduling for shared

window joins over data streams. Frontiers of Computer Science
in China, Vol. 01, No. 04, 2007

[Chang, JOS07] Jianlong Chang, Feng Cao, Aoying Zhou.
Clustering evolving data streams over sliding windows. Journal
of Software, Vol. 18, No. 4, 2007 (In Chinese)

84

References (2008)

[Yan, ICDEOS8] Ying Yan, Beng Chin Ooi, Aoying Zhou:
Continuous Content—Based Copy Detection over
Streaming Videos. ICDE 2008: 853-862

[Zhou, ICDEO8] Aoving Zhou, Ying Yan, Xueqing Gong,
Jianlong Chang, Dai Dai: SMART: A System for Online
Monitoring LLarge Volumes of Network Traffic. ICDE

2008: 1576-1579 (demo)

[Jin, VLDBO8] Cheqing Jin, Ke Yi, Lei Chen, Jeffrey
Xu Yu, Xuemin Lin. Sliding—window top—k queries on
Uncertain Streams. VLDB, 2008

85

Thanks for Your
Attention!

QA

